General Relativity and Gravitation

, Volume 7, Issue 8, pp 669–680 | Cite as

A class of approximate stationary solutions of the Einstein-Maxwell equations

  • Jamal N. Islam
Research Articles

Abstract

A class of approximate stationary solutions of the Einstein-Maxwell equations are obtained by expanding the metric in powers of a certain parameter and solving explicitly the first few orders in terms of four harmonic functions. These solutions, to the order considered, reduce to the Weyl, Bonnor, and Perjés-Israel-Wilson solutions, respectively, for suitable choice of the harmonic functions. They also contain a subclass that is asymptomatically flat and has realistic arbitrary spinning sources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Islam, J. N. (1976).Math. Proc. Cambridge Philos. Soc.,79, 161.Google Scholar
  2. 2.
    Papapetrou, A. (1947).Proc. Roy. Irish Acad.,51, 191.Google Scholar
  3. 3.
    Majumdar, S. D. (1947).Phys. Rev.,72, 390.Google Scholar
  4. 4.
    Weyl, H. (1917).Ann. Phys.,54, 117.Google Scholar
  5. 5.
    Israel, W. and Wilson, G. A. (1972).J. Math. Phys.,13, 865.Google Scholar
  6. 6.
    Perjés, Z. (1971).Phys. Rev. Lett.,27, 1668.Google Scholar
  7. 7.
    Bonnor, W. B. (1973).Commun. Math. Phys.,34, 77.Google Scholar
  8. 8.
    Papapetrou, A. (1953).Ann. Phys.,12, 309.Google Scholar
  9. 9.
    Hartle, J. B. and Hawking, S. W. (1972).Commun. Math. Phys.,26, 87.Google Scholar
  10. 10.
    Einstein, A., Infeld, L. and Hoffmann, B. (1938).Ann. Math.,39, 65.Google Scholar
  11. 11.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman and Company, San Francisco).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Jamal N. Islam
    • 1
  1. 1.Department of Applied Mathematics and AstronomyUniversity CollegeCardiffUK

Personalised recommendations