General Relativity and Gravitation

, Volume 18, Issue 5, pp 497–509 | Cite as

Two Kerr-NUT constituents in equilibrium

  • Dietrich Kramer
Research Articles

Abstract

The equilibrium conditions for the superposition of two Kerr-NUT solutions are revisited. The new derivation of these conditions leads to formulas which include also the hyperextreme case. In the symmetric model of two hyperextreme constituents [3–5,8] the surfacef=0 of infinite red shift is investigated. It turns out that, for large enough distance parameter, the surfacef=0 consists of disconnected parts surrounding each source separately.

Keywords

Equilibrium Condition Differential Geometry Symmetric Model Distance Parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnor, W. B. (1969).Proc. Cambridge Philos. Soc.,66, 145.Google Scholar
  2. 2.
    Dietz, W., and Hoenselaers, C. (1982).Phys. Rev. Lett.,48, 778.Google Scholar
  3. 3.
    Dietz, W. (1984). HKX transformations: Some results, inLecture Notes in Physics, No. 205, Solutions of Einstein 's Equations: Techniques and Results, Hoenselaers, C., and Dietz, W., eds. (Springer-Verlag, Berlin), pp. 85–112.Google Scholar
  4. 4.
    Dietz, W. (1984). Habilitationsschrift, Universität Würzburg.Google Scholar
  5. 5.
    Dietz, W., and Hoenselaers, C. (1984). preprint MPA 167.Google Scholar
  6. 6.
    Ernst, F. J. (1968).Phys. Rev.,167, 1175.Google Scholar
  7. 7.
    Hoenselaers, C. (1983). inProceedings of the 3rd Marcel Grossmann Meeting on General Relativity, Shanghai 1982, Hu Ning, ed. (North-Holland, Amsterdam).Google Scholar
  8. 8.
    Hoenselaers, C., and Dietz, W. (1983). Talk given at GR10, Padova.Google Scholar
  9. 9.
    Kihara, M., and Tomimatsu, A. (1982).Progr. Theor. Phys.,67, 349.Google Scholar
  10. 10.
    Kihara, M., Oohara, K., Sato, H., and Tomimatsu, A. (1983). GR10 Padova 1983, Contributed Papers, Vol. 1, 272.Google Scholar
  11. 11.
    Kramer, D. (1980). GR9 Jena 1980, Abstracts of Contributed Papers, Vol. 1, 42.Google Scholar
  12. 12.
    Kramer, D., and Neugebauer, G. (1980).Phys. Lett.,75A, 259.Google Scholar
  13. 13.
    Neugebauer, G. (1979).J. Phys. A: Math. Gen.,12, L67.Google Scholar
  14. 14.
    Neugebauer, G. (1980).J. Phys. A: Math. Gen.,13, L19.Google Scholar
  15. 15.
    Neugebauer, G. (1981).Phys. Lett.,86A, 91.Google Scholar
  16. 16.
    Neugebauer, G., and Kramer, D. (1980).Exp. Tech. Phys.,28, 3.Google Scholar
  17. 17.
    Neugebauer, G., and Kramer, D. (1983).J. Phys. A: Math. Gen.,16, 1927.Google Scholar
  18. 18.
    Neugebauer, G., and Meinel, R. (1984).Phys. Lett.,100A, 467.Google Scholar
  19. 19.
    Oohara, K., and Sato, H. (1981).Progr. Theor. Phys.,65, 1891.Google Scholar
  20. 20.
    Sackfield, A. (1971).Proc. Cambridge Philos. Soc.,70, 89.Google Scholar
  21. 21.
    Sato, H. (1983). Talk at Asia Pacific Physics Conference, Singapore 1983, Preprint RIFP 527.Google Scholar
  22. 22.
    Tomimatsu, A. (1983).Progr. Theor. Phys.,70, 385.Google Scholar
  23. 23.
    Tomimatsu, A., and Kihara, M. (1982).Progr. Theor. Phys.,67, 1406.Google Scholar
  24. 24.
    Yamazaki, M. (1983).Phys. Rev. Lett.,50, 1027;Progr. Theor. Phys.,69, 503.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Dietrich Kramer
    • 1
  1. 1.Sektion PhysikFriedrich-Schiller-Universität JenaJenaGerman Democratic Republic

Personalised recommendations