Influence of phosphorus impurity on the integranular corrosion cracking of iron and iron-carbon alloys in nitrates

  • E. É. Glikman
  • Yu. V. Goryunov
  • I. Yu. Ledovskaya
  • E. V. Mindukshev
  • S. V. Trubin
  • É. K. Zenkova
Article
  • 24 Downloads

Keywords

Iron Nitrate Phosphorus Phosphorus Impurity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. MacMahon, K. Bryant, and S. Benerji, “The influence of hydrogen and impurities on the brittle fracture of steel,” in: Fracture Mechanics. News in Foreign Science [Russian translation], Mir, Moscow (1979), pp. 109–133.Google Scholar
  2. 2.
    J. C. Scully, “Mechanism of dissolution-controlled cracking,” Met. Sci.,12, No. 6, 290–300 (1978).Google Scholar
  3. 3.
    I. I. Vasilenko and R. K. Melekhov, Corrosion Cracking of Steels [in Russian], Nauk, Dumka, Kiev (1977).Google Scholar
  4. 4.
    C. Lea, “Stress corrosion cracking and temper brittleness effect of phosphorus grain boundary segregation in a low alloy steel,” Met. Sci., No. 3, 107–112 (1980).Google Scholar
  5. 5.
    P. Doig and P. E. J. Flewitt, “The influence of temper embrittlement on the stress corrosion susceptibility of Fe-3% Ni alloys,” Acta Met.,26, 1283–1291 (1978).Google Scholar
  6. 6.
    E. É. Glikman, R. É. Bruver, and K. Yu. Sarychev, “The influence of carbon on the intergranular internal adsorption and intergranular cohesion in Fe—P alloys,” Dokl. Akad. Nauk SSSR,200, No. 5, 1055–1058 (1971).Google Scholar
  7. 7.
    R. N. Parkins, “Stress corrosion cracking of low strength ferritic steels,” in: Theory of Stress Corrosion Cracking in Alloys, Brussels (1971), pp. 167–186.Google Scholar
  8. 8.
    J. Flis, “Effect of C on the corrosion of Fe in NH4,NO3 Sci. solution within a wide potential range,” Corros. Sci.,10, 745–759 (1970).Google Scholar
  9. 9.
    E. E. Glikman, Yu. V. Goryunov, V. M. Demin, and K. Yu. Sarychev, “The kinetics and mechanism of fracture of copper in deformation in surface-active molten substances,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 7–15 (1976).Google Scholar
  10. 10.
    E. É. Glikman, “The change in carbon content in the zones near the grain boundaries in the development of temper brittleness of steel,” Fiz. Met. Metalloved., No. 4, 713–716 (1968).Google Scholar
  11. 11.
    J. Flis, “Action of carbon in stress corrosion cracking of mild steel in nitrate solutions,” Corrosion (USA),29, No. 1, 37–44 (1973).Google Scholar
  12. 12.
    G. V. Karpenko, I. I. Vasilenko, and N. I. Dikii, “The corrosion cracking of low-carbon steels in boiling nitrate solutions,” Dokl. Akad. Nauk SSSR,198, No. 6, 1393–1396 (1971).Google Scholar
  13. 13.
    S. V. Trubin, “An investigation of the low-temperature reversibility of intergranular impurity brittleness of certain bcc iron base solid solutions,” Author's Abstract of Candidate in Physicomathematical Sciences Thesis, Tomsk (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • E. É. Glikman
    • 1
  • Yu. V. Goryunov
    • 1
  • I. Yu. Ledovskaya
    • 1
  • E. V. Mindukshev
    • 1
  • S. V. Trubin
    • 1
  • É. K. Zenkova
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations