Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literature cited

  1. K. MacMahon, K. Bryant, and S. Benerji, “The influence of hydrogen and impurities on the brittle fracture of steel,” in: Fracture Mechanics. News in Foreign Science [Russian translation], Mir, Moscow (1979), pp. 109–133.

    Google Scholar 

  2. J. C. Scully, “Mechanism of dissolution-controlled cracking,” Met. Sci.,12, No. 6, 290–300 (1978).

    Google Scholar 

  3. I. I. Vasilenko and R. K. Melekhov, Corrosion Cracking of Steels [in Russian], Nauk, Dumka, Kiev (1977).

    Google Scholar 

  4. C. Lea, “Stress corrosion cracking and temper brittleness effect of phosphorus grain boundary segregation in a low alloy steel,” Met. Sci., No. 3, 107–112 (1980).

    Google Scholar 

  5. P. Doig and P. E. J. Flewitt, “The influence of temper embrittlement on the stress corrosion susceptibility of Fe-3% Ni alloys,” Acta Met.,26, 1283–1291 (1978).

    Google Scholar 

  6. E. É. Glikman, R. É. Bruver, and K. Yu. Sarychev, “The influence of carbon on the intergranular internal adsorption and intergranular cohesion in Fe—P alloys,” Dokl. Akad. Nauk SSSR,200, No. 5, 1055–1058 (1971).

    Google Scholar 

  7. R. N. Parkins, “Stress corrosion cracking of low strength ferritic steels,” in: Theory of Stress Corrosion Cracking in Alloys, Brussels (1971), pp. 167–186.

  8. J. Flis, “Effect of C on the corrosion of Fe in NH4,NO3 Sci. solution within a wide potential range,” Corros. Sci.,10, 745–759 (1970).

    Google Scholar 

  9. E. E. Glikman, Yu. V. Goryunov, V. M. Demin, and K. Yu. Sarychev, “The kinetics and mechanism of fracture of copper in deformation in surface-active molten substances,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 7–15 (1976).

    Google Scholar 

  10. E. É. Glikman, “The change in carbon content in the zones near the grain boundaries in the development of temper brittleness of steel,” Fiz. Met. Metalloved., No. 4, 713–716 (1968).

    Google Scholar 

  11. J. Flis, “Action of carbon in stress corrosion cracking of mild steel in nitrate solutions,” Corrosion (USA),29, No. 1, 37–44 (1973).

    Google Scholar 

  12. G. V. Karpenko, I. I. Vasilenko, and N. I. Dikii, “The corrosion cracking of low-carbon steels in boiling nitrate solutions,” Dokl. Akad. Nauk SSSR,198, No. 6, 1393–1396 (1971).

    Google Scholar 

  13. S. V. Trubin, “An investigation of the low-temperature reversibility of intergranular impurity brittleness of certain bcc iron base solid solutions,” Author's Abstract of Candidate in Physicomathematical Sciences Thesis, Tomsk (1981).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 18, No. 5, pp. 26–31, September–October, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glikman, E.É., Goryunov, Y.V., Ledovskaya, I.Y. et al. Influence of phosphorus impurity on the integranular corrosion cracking of iron and iron-carbon alloys in nitrates. Soviet Materials Science 18, 390–395 (1983). https://doi.org/10.1007/BF00770406

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00770406

Keywords

Navigation