Strength of Materials

, Volume 11, Issue 6, pp 607–611 | Cite as

Determination of the stress-intensity factor by the strain-gauge method

  • A. B. Zlochevskii
  • L. A. Bondarovich
  • A. N. Shuvalov
Scientific-Technical Section


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. H. Marloff, M. M. Leven, T. N. Ringlen, and R. L. Johnson, “Photoelastic determination of stress-intensity factors,” Exp. Mech.,11, No. 12, 529–539 (1971).Google Scholar
  2. 2.
    W. W. Gerberich, “Stress distribution around a growing crack determined by photoelastic coating method,” Exp. Mech.,2, No, 12, 359–365 (1962).Google Scholar
  3. 3.
    A. S. Kobayashi, D. V. Harris, and W. L. Engstrom, “Transient analysis in a fracturing magnesium plate,” Proc. SESA,24, No. 2, 434–440 (1967).Google Scholar
  4. 4.
    A. Ya. Aleksandrov and M. Kh. Akhmetzyanov, Polarization-Optical Methods of the Mechanics of a Deformed Body [in Russian], Nauka, Moscow (1973).Google Scholar
  5. 5.
    V. V. Dolgopolov and S. E. Shilov, “Determination of the stress intensity factor in structures with cracks by the method of photoelasticity,” Probl. Proch., No. 2, 108–110 (1975).Google Scholar
  6. 6.
    G. Neiber, Stress Concentrations [in Russian], Gostekhizdat, Moscow-Leningrad (1947).Google Scholar
  7. 7.
    U. Brown and J. Srawley, Fracture Toughness Tests of High-Strength Materials under Plane Strain [Russian translation], Mir, Moscow (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • A. B. Zlochevskii
    • 1
  • L. A. Bondarovich
    • 1
  • A. N. Shuvalov
    • 1
  1. 1.Moscow

Personalised recommendations