Skip to main content
Log in

Control of mitochondrial Ca2+ retention by ADP-stimulated glutamic dehydrogenase

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The protective effect of ADP on unspecific Ca2+ release and collapse of the transmembrane potential was analyzed in mitochondria from kidneys of rats. The presence of ADP in the incubation mixture prevents Ca2+ leakage and collapse of δω in sucrose-containing medium, but fails to do so in KCl medium. The effect of the adenine nucleotide in sucrose media correlates with an increase in the level of reduced pyridine nucleotides; the increase was due to a stimulatory effect on the activity of glutamic dehydrogenase. It also was observed that in KCl media, in the presence and in the absence of ADP the rate of NADH oxidation through the respiratory chain was higher than in sucrose; in this latter medium a high level of reduced pyridine nucleotides was found, in comparison to KCl media. It is proposed that the role of ADP is to increase glutamic dehydrogenase activity and in consequence to provoke a higher rate of formation of NADH which in turn controls Ca2+ release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akerman, K. E. O., and Wikström, M. K. F. (1976).FEBS Lett. 68, 191–197.

    Google Scholar 

  • Beatrice, M. C., Palmer, J. W., and Pfeiffer, D. R. (1980).J. Biol. Chem. 255, 8663–8671.

    Google Scholar 

  • Beatrice, M. C., Stiers, D. L., and Pfeiffer, D. R. (1984).J. Biol. Chem. 259, 1279–1287.

    Google Scholar 

  • Bellomo, G., Jewell, S. A., Thor, H., and Orrenius, S. (1982).Proc. Natl. Acad. Sci. USA 79, 6842–6846.

    Google Scholar 

  • Bryla, J., and Jolanta, M. D. (1977).Biochim. Biophys. Acta 462, 273–282.

    Google Scholar 

  • Chávez, E., Briones, R., Michel, B., Bravo, C., and Jay, D. (1985).Arch. Biochem. Biophys. 242, 493–497.

    Google Scholar 

  • Crompton, M., Capano, M., and Carafoli, E., (1976).Eur. J. Biochem. 69, 453–462.

    Google Scholar 

  • Denton, R. M., and McCormack, J. G. (1980).FEBS Lett. 119, 1–8.

    Google Scholar 

  • Fiscum, G., and Cockrell, R. S. (1978).FEBS Lett. 92, 125–128.

    Google Scholar 

  • Godinot, C., and Gautheron, D. (1972).Biochimie 54, 245–256.

    Google Scholar 

  • Gómez-Puyou, A., Tuena, M., Sandoval, F., Chávez, E., and Peña, A. (1972).Biochemistry 11, 97–102.

    Google Scholar 

  • Harris, E. J. (1979).Biochem. J. 178, 673–680.

    Google Scholar 

  • Haworth, R. A., and Hunter, D. F. (1980)J. Membr. Biol. 54, 231–236.

    Google Scholar 

  • Hunter, D. F., and Haworth, R. A. (1974).Arch. Biochem. Biophys. 195, 453–459.

    Google Scholar 

  • Jarvisalo, J. O., Kilpio, J., and Saris, N. E. L. (1980).Environ. Res. 22, 217–223.

    Google Scholar 

  • Jurkowitz, M. S., and Brierley, G. P. (1984).J. Bioenerg. Biomembr. 14, 435–449.

    Google Scholar 

  • Jurkowitz, M. S., Geisbuhler, T., Jung, D. W., and Brierley, G. P. (1983).Arch. Biochem. Biophys. 223, 120–128.

    Google Scholar 

  • Kendrick, N. C. (1976).Anal. Biochem. 76, 487–501.

    Google Scholar 

  • Krebs, E. G., and Bravo, J. A. (1979).Annu. Rev. Biochem. 48, 923–959.

    Google Scholar 

  • Lehninger, A. L., Carafoli, E., and Rossi, C. S. (1967). InAdvances in Enzymology (Nord, F. F., ed.), Interscience, New York, Vol. 29, pp. 259–320.

    Google Scholar 

  • Lehninger, A. L., Vercesi, A., and Babanunmi, E. (1978).Proc. Natl. Acad. Sci. USA 75, 1690–1694.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randal, R. J. (1951).J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Moore, C. L. (1971).Biochem. Biophys. Res. Commun. 42, 298–304.

    Google Scholar 

  • Nicholls, D. G., and Crompton, M. (1980).FEBS Lett. 111, 261–268.

    Google Scholar 

  • Nicholls, D. G. and Akerman, K. (1982).Biochim. Biophys. Acta 683, 57–88.

    Google Scholar 

  • Palmer, J. W., and Pfeiffer, D. R. (1981).J. Biol. Chem. 256, 6742–6750.

    Google Scholar 

  • Panov, A., Filippova, J., and Lyakhovich, V. (1980).Arch. Biochem. Biophys. 189, 107–122.

    Google Scholar 

  • Peng, C. F., Straub, K. D., Kam, J. J., Murphy, M. L., and Wadkins, C. L. (1977).Biochim. Biophys. Acta 462, 403–413.

    Google Scholar 

  • Reed, K. C., and Bygrave, F. L. (1974).Biochem. J. 140, 143–155.

    Google Scholar 

  • Rossi, C. S., and Lehninger, A. L. (1964).J. Biol. Chem. 239, 3971–3980.

    Google Scholar 

  • Siliprandi, D., Siliprandi, N., and Toninello, A. (1983).Eur. J. Biochem. 130, 173–175.

    Google Scholar 

  • Toninello, A., Siliprandi, D., and Siliprandi, N. (1983).Biochem. Biophys. Res. Commun. 111, 792–797.

    Google Scholar 

  • Vasington, F. D., and Murphy, J. V. (1962).J. Biol. Chem. 237, 2670–2677.

    Google Scholar 

  • Weiner, M. W., and Lardy, H. (1973).J. Biol. Chem. 248, 7682–7687.

    Google Scholar 

  • Wolkowitz, P. E., and McMillin-Wood, J. (1981).Arch. Biochem. Biophys. 209, 408–422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chávez, E., Jay, D. Control of mitochondrial Ca2+ retention by ADP-stimulated glutamic dehydrogenase. J Bioenerg Biomembr 19, 571–580 (1987). https://doi.org/10.1007/BF00770038

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00770038

Key Words

Navigation