Skip to main content
Log in

Proton conductance through phospholipid bilayers: Water wires or weak acids?

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The proton/hydroxide (H+/OH) permeability of phospholipid bilayer membranes at neutral pH is at least five orders of magnitude higher than the alkali or halide ion permeability, but the mechanism(s) of H+/OH transport are unknown. This review describes the characteristics of H+/OH permeability and conductance through several types of planar phospholipid bilayer membranes. At pH7, the H+/OH conductances (G H/OH) range from 2–6 nS cm−2, corresponding to net H+/OH permeabilities of (0.4–1.7)×10−5 cm sec−1. Inhibitors ofG H/OH include serum albumin, phloretin, glycerol, and low pH. Enhancers ofG H/OH include chlorodecane, fatty acids, gramicidin, and voltages >80 mV. Water permeability andG H/OH are not correlated. The characteristics ofG H/OH in fatty acid (weak acid) containing membranes are qualitatively similar to the controls in at least eight different respects. The characteristics ofG H/OH in gramicidin (water wire) containing membranes are qualitatively different from the controls in at least four different respects. Thus, the simplest explanation for the data is thatG H/OH in unmodified bilayers is due primarily to weakly acidic contaminants which act as proton carriers at physiological pH. However, at low pH or in the presence of inhibitors, a residualG H/OH remains which may be due to water wires, “hydrated defects,” or other mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O. A., Finkelstein, A., Katz, I., and Cass, A. (1976).J. Gen. Physiol. 67, 749–771.

    Google Scholar 

  • Boheim, G., Hanke, W., and Eibl, H. (1980).Proc. Natl. Acad. Sci. USA 77, 3403–3407.

    Google Scholar 

  • Cadenhead, B. A., and Bean, K. E. (1972).Biochim. Biophys. Acta 290, 43–57.

    Google Scholar 

  • Cafiso, D. S., and Hubbell, W. L. (1983).Biophys. J. 44, 49–57.

    Google Scholar 

  • Chernomordik, L. V., Melikyan, G. B., Dubrovina, N. I., Abidor, I. G., and Chizmadzhev, Yu. A. (1984).Bioelectrochem. Bioenerg. 12, 155–166.

    Google Scholar 

  • Conrad, M. P., and Strauss, H. L. (1985).Biophys. J. 48, 117–124.

    Google Scholar 

  • Deamer, D. W., and Barchfeld, G. (1984). InHydrogen Ion Transport in Epithelia (Forte, J. G., Warnock, D. G., and Rector, F. C., eds.), Wiley, New York, pp. 13–19.

    Google Scholar 

  • Deamer, D. W., and Gutknecht, J. (1986).Methods Enzymol. 127, 471–480.

    Google Scholar 

  • Dilger, J. P., McLaughlin, S. G. A., McIntosh, T. J., and Simon, S. A. (1979).Science 206, 1196–1198.

    Google Scholar 

  • Eigen, M., and De Maeyer, L. (1954).Proc. R. Soc. London A 247, 505–533.

    Google Scholar 

  • Elamrani, K., and Blume, A. (1983).Biochim. Biophys. Acta 727, 22–30.

    Google Scholar 

  • Fettiplace, R., and Haydon, D. A. (1980).Physiol. Rev. 60, 510–550.

    Google Scholar 

  • Frankel, E. N. (1982).Prog. Lipid Res. 22, 1–33.

    Google Scholar 

  • Grzesiek, S., and Dencher, N. A. (1986).Biophys. J. 50, 265–276.

    Google Scholar 

  • Gutknecht, J. (1984a). InHydrogen Ion Transport in Epithelia (Forte, J. G., Warnock, D. G., and Rector, F. C., eds.), Wiley, New York, pp. 3–12.

    Google Scholar 

  • Gutknecht, J. (1984b).J. Membr. Biol. 82, 105–112.

    Google Scholar 

  • Gutknecht, J. (1987).Biochim. Biophys. Acta 898, 97–108.

    Google Scholar 

  • Gutknecht, J., and Walter, A. (1981).Biochim. Biophys. Acta 641, 183–188.

    Google Scholar 

  • Hamilton, J. A., and Cistola, D. P. (1986).Proc. Natl. Acad. Sci. USA 83, 82–86.

    Google Scholar 

  • Hladky, S. B., and Haydon, D. A. (1972).Biochim. Biophys. Acta 274, 294–312.

    Google Scholar 

  • Ives, H. E., and Verkman, A. S. (1985).Am. J. Physiol. 249, F933-F940.

    Google Scholar 

  • Kasianowicz, J., Benz, R., and McLaughlin, S. (1987).J. Membr. Biol. 95, 73–89.

    Google Scholar 

  • Krasne, S., Eisenman, G., and Szabo, G. (1971).Science 174, 412–415.

    Google Scholar 

  • Krishnamoorthy, G. (1986).Biochemistry 25, 6666–6671.

    Google Scholar 

  • Krishnamoorthy, G., and Hinkle, P. C. (1984).Biochemistry 23, 1640–1645.

    Google Scholar 

  • Kronick, P. (1977).Ann. N.Y. Acad. Sci. 303, 295–297.

    Google Scholar 

  • LeBlanc, O. H., Jr. (1971).J. Membr. Biol. 4, 227–251.

    Google Scholar 

  • Levitt, D. L. (1984).Curr. Top. Membr. Transport 21, 181–197.

    Google Scholar 

  • Levitt, D. L., Elias, S. R., and Hautman, J. M. (1978).Biochim. Biophys. Acta 512, 436–451.

    Google Scholar 

  • McLaughlin, S. G. A., and Dilger, J. P. (1980).Physiol. Rev. 60, 825–863.

    Google Scholar 

  • McLaughlin, S. G. A., Bruder, A., Chen, S., and Moser, C. (1975).Biochim. Biophys. Acta 394, 304–313.

    Google Scholar 

  • Myers, V. B., and Haydon, D. A. (1972).Biochim. Biophys. Acta 274, 313–322.

    Google Scholar 

  • Mitchell, P., and Moyle, J. (1967).Biochem. J. 104, 588–600.

    Google Scholar 

  • Nagle, J. F., and Morowitz, H. L. (1978).Proc. Natl. Acad. Sci. USA 75, 298–302.

    Google Scholar 

  • Nagle, J. F., and Tristram-Nagle, S. (1983).J. Membr. Biol. 74, 1–14.

    Google Scholar 

  • Neher, E., Sandblom, J., and Eisenman, G. (1978).J. Membr. Biol. 40, 97–116.

    Google Scholar 

  • Nichols, J. W., and Deamer, D. W. (1980).Proc. Natl. Acad. Sci. USA 77, 2038–2042.

    Google Scholar 

  • Nozaki, Y., and Tanford, C. (1981).Proc. Natl. Acad. Sci. USA 78, 4324–4328.

    Google Scholar 

  • Perkins, W. R., and Cafiso, D. S. (1986).Biochemistry 25, 2270–2276.

    Google Scholar 

  • Reynolds, J., Herbert, S., and Steinhardt, J. (1968).Biochemistry 7, 1357–1361.

    Google Scholar 

  • Rosenberg, P. A., and Finkelstein, A. (1978).J. Gen. Physiol. 72, 327–340.

    Google Scholar 

  • Rossignol, M., Thomas, P., and Grignon, C. (1982).Biochim. Biophys. Acta 684, 195–199.

    Google Scholar 

  • Seigneuret, M., and Rigaud, J.-L. (1986).Biochemistry 25, 6716–6722.

    Google Scholar 

  • Smith, J. R., Coster, H. G. L., and Laver, D. R. (1985).Biochim. Biophys. Acta 812, 181–192.

    Google Scholar 

  • Stark, G., and Awiszus, R. (1982).Biochim. Biophys. Acta 691, 188–192.

    Google Scholar 

  • Storch, J., and Kleinfeld, A. M. (1986).Biochemistry 25, 1717–1726.

    Google Scholar 

  • Surewicz, W. K. (1984).Chem. Phys. Lipids 34, 363–372.

    Google Scholar 

  • Toyoshima, Y., and Thompson, T. E. (1975).Biochemistry 14, 1525–1531.

    Google Scholar 

  • Uhlendorf, V. (1984).Biophys. Chem. 20, 261–273.

    Google Scholar 

  • Verkman, A. S., and Ives, H. E. (1986).Biochemistry 25, 2876–2882.

    Google Scholar 

  • Walter, A., and Gutknecht, J. (1984).J. Membr. Biol. 77, 255–264.

    Google Scholar 

  • Wright, E. M., Schell, R. E., and Gunther, R. D. (1984). InHydrogen Ion Transport in Epithelia (Forte, J. G., Warnock, D. G., and Rector, F. C., eds.), Wiley, New York, pp. 21–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutknecht, J. Proton conductance through phospholipid bilayers: Water wires or weak acids?. J Bioenerg Biomembr 19, 427–442 (1987). https://doi.org/10.1007/BF00770028

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00770028

Key Words

Navigation