Advertisement

General Relativity and Gravitation

, Volume 21, Issue 9, pp 907–939 | Cite as

Scalar field counterexamples to the cosmic censorship hypothesis

  • M. D. Roberts
Research Articles

Abstract

The applications of spherically symmetric solutions of the massless scalar Einstein equations to cosmic censorship are discussed. A new nonstatic solution to these equations is given. The Vaidya form of Wyman's solution is constructed and is shown to obey reasonable energy conditions.

Keywords

Energy Condition Scalar Field Differential Geometry Einstein Equation Symmetric Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buchdahl, H. A. (1959).Phys. Rev.,111, 1417.Google Scholar
  2. 2.
    Bergman, O., and Leipnik, R. (1957).Phys. Rev.,107, 1157.Google Scholar
  3. 3.
    Janis, A. I., Newman, E. T., and Wincour, J. (1968).Phys. Rev. Lett.,20, 878.Google Scholar
  4. 4.
    Chase, J. E. (1970).Commun. Math. Phys.,19, 276.Google Scholar
  5. 5.
    Wyman, M. (1981).Phys. Rev.,D24, 839.Google Scholar
  6. 6.
    Agnese, A. G., and LaCamera, M. (1982).Lett. Nuovo Cimenta,35, 365.Google Scholar
  7. 7.
    Agnese, A. G., and LaCamera, M. (1985).Phys. Rev.,D31, 1280.Google Scholar
  8. 8.
    Dionysion, D. D. (1982).Astro. Space Sci.,83, 493.Google Scholar
  9. 9.
    Froyland, J. (1982).Phys. Rev.,D25, 1470.Google Scholar
  10. 10.
    Roberts, M. D. (1985).Gen. Rel. Grav.,17, 913.Google Scholar
  11. 11.
    Roberts, M. D. (1985).Class. Quant. Grav.,2, L69.Google Scholar
  12. 12.
    Roberts, M. D. (1986). Ph. D. thesis (University of London).Google Scholar
  13. 13.
    Roberts, M. D. (1988).Astro. Space Sci.,147, 321.Google Scholar
  14. 14.
    Sokolowski, L., and Carr, B. (1986).Phys. Lett.,B176, 334.Google Scholar
  15. 15.
    Tomimats, A. (1986).Prog. Theor. Phys.,76, 639.Google Scholar
  16. 16.
    Hiscock, W., Williams, L. G., and Eardley, D. M. (1982).Phys. Rev.,D26, 751.Google Scholar
  17. 17.
    Kuroda, Y. (1984).Prog. Theor. Phys.,72, 63.Google Scholar
  18. 18.
    Christodoulou, D. (1984).Commun. Math. Phys.,93, 171.Google Scholar
  19. 19.
    Papapertrou, A. (1984). Formation of a singularity and causality, Preprint (Institute Henri Poincare).Google Scholar
  20. 20.
    Vaidya, P. C. (1951).Proc. Ind. Acad. Sci.,A33, 264.Google Scholar
  21. 21.
    Vaidya, P. C. (1953).Nature,171, 260.Google Scholar
  22. 22.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge).Google Scholar
  23. 23.
    Tabensky, R., and Taub, A. H. (1972).Commun. Math. Phys.,29, 61.Google Scholar
  24. 24.
    Goodinson, P. A. (1969).Ann. Fis.,65, 355.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • M. D. Roberts
    • 1
  1. 1.LondonUK

Personalised recommendations