Strength of Materials

, Volume 14, Issue 6, pp 800–804 | Cite as

Application of the method of forces to the solution of problems of contact interaction of nodes in structures

  • N. S. Galkina
  • V. I. Grishin
  • A. I. Surkov
Scientific-Technical Section
  • 21 Downloads

Keywords

Contact Interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. A. Chelyubeev and M. P. Sychev, “Solution of the plane contact problem of the theory of elasticity in stresses by the finite element method,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 7, 16–20 (1975).Google Scholar
  2. 2.
    P. M. Varvak, N. M. Medvedeva, and A. V. Perel'muter, “Axisymmetric problem of the contact of several thin shells with finite displacements,” in: Fourth All-Union Congress on Theoretical and Applied Mechanics: Abstracts of Papers, Naukova Dumka, Kiev (1976), p. 85.Google Scholar
  3. 3.
    Yu. A. Shevchenko, “Application of the finite element method to the solution of the contact problem of the theory of elasticity with variable contact zone without friction,” Uch. Zap. Tsentr. Aerogidrodin. Inst.,7, No. 6, 139–147 (1976).Google Scholar
  4. 4.
    O. C. Zienkiewicz and I. K. Cheung, Finite Element Method in Engineering Science, 2nd. Ed., McGraw Hill.Google Scholar
  5. 5.
    V. I. Grishin, “Method and program for calculating the state of stress and strain of elastic structural elements with stress raisers,” Tr. Tsentr. Aerogidrodin. Inst., No. 1500, 20 (1973).Google Scholar
  6. 6.
    V. I. Grishin, “Method and program for calculating the state of stress of bulky structural elements,” Tr. Tsentr. Aerogidrodin. Inst., No. 1622, 25 (1974).Google Scholar
  7. 7.
    N. I. Muskhelishvili, Some Fundamental Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • N. S. Galkina
    • 1
  • V. I. Grishin
    • 1
  • A. I. Surkov
    • 1
  1. 1.Zhukovskii, Moscow

Personalised recommendations