Foundations of Physics Letters

, Volume 3, Issue 4, pp 347–357 | Cite as

A quantum mechanical twin paradox

  • Dennis Dieks


When a quantummechanical wavepacket undergoes a series of Galilean boosts, the Schrödinger theory predicts the occurrence of a geometrical phase effect that is an example of Berry's phase (Sagnac's phase). In the present paper the conceptual consequences of this phenomenon are considered, in particular for the status of Galilean invariance in nonrelativistic quantum mechanics, and for the relation between that theory and classical physics.

Key words

Galilean invariance Schrödinger theory Sagnac effect Berry's phase Hannay's angle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Dieks and G. Nienhuis, “Relativistic aspects of non-relativistic quantum mechanics”,Am. J. Phys. 58 (1990), July issue, to appear.Google Scholar
  2. [2]
    M. V. Berry, “Quantal phase factors accompanying adiabatic changes”,Proc. R. Soc. A 392, 45–57 (1984).Google Scholar
  3. [3]
    R. Chiao, “Berry's phase in optics: Aharonov-Bohm-like effects and gauge structures in surprising contexts”,Nucl. Phys. B (Proc. Suppl.) 6, 298–305 (1989).Google Scholar
  4. [4]
    G. Sagnac, “Les systèmes optiques en mouvement et la translation de la terre”,C. R. Acad. Sci. (Paris) 152, 310–313 (1911); “L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre en rotation uniforme”,C. R. Acad. Sci. (Paris) 157, 708–710 (1913); “Sur la preuve de la réalité de l'éther lumineux par l'experience de l'interférographe tournant”,C. R. Acad. Sci. (Paris) 157, 1410–1413 (1913).Google Scholar
  5. [5]
    J. Anandan, “Sagnac effect in relativistic and nonrelativistic physics”,Phys. Rev. D 24, 338–346 (1981).Google Scholar
  6. [6]
    S.A. Werner, J.-L. Staudenmann, and R. Colella, “Effect of earth's rotation on the quantum mechanical phase of the neutron”,Phys. Rev. Lett. 42, 1103–1106 (1979).Google Scholar
  7. [7]
    M. V. Berry, “Classical adiabatic angles and quantal adiabatic phase”,J. Phys. A: Math. Gen. 18, 15–27 (1985).Google Scholar
  8. [8]
    J. H. Hannay, “Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian”,J. Phys. A: Math. Gen. 18, 221–230, (1985).Google Scholar
  9. [9]
    E. Gozzi and W. D. Thacker, “Classical adiabatic holonomy in a Grassmannian system”,Phys. Rev. D 35, 2388–2397 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Dennis Dieks
    • 1
  1. 1.Department of History and Foundations of ScienceRijksuniversiteit te UtrechtUtrechtThe Netherlands

Personalised recommendations