Catalysis Letters

, Volume 14, Issue 3–4, pp 305–313 | Cite as

The role of C2 intermediates in Fischer-Tropsch synthesis over ruthenium

  • Kamala R. Krishna
  • Alexis T. Bell


The C2 products formed over Ru during Fischer-Tropsch synthesis often lie well below the Anderson-Schulz-Flory line describing the C4+ products. This has led to speculation that either the surface precursor to C2 hydrocarbons is exceptionally long lived, or that the ethylene formed by CO hydrogenation readsorbs and thereby reenters the chain growth process. In this study, the role of ethylene readsorption on the dynamics of chain initiation and growth is investigated using13CO/H2 and12C2H4 to differentiate between the carbon sources. Ethylene addition is found to suppress the rate of methanation and increase the rates of formation of C3+ hydrocarbons. Ethylene serves as an effective chain initiator, as well as a source of C1 monomer species which participate in chain propagation. No evidence is seen, though, for the participation of C2 species in chain propagation.


C2 intermediates Fischer-Tropsch synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.B. Anderson,The Fischer-Tropsch Synthesis (Academic Press, New York, 1984).Google Scholar
  2. [2]
    C.S. Kellner and A.T. Bell, J. Catal. 70 (1981) 418.Google Scholar
  3. [3]
    D. Stern, H. Heinemann and A.T. Bell, Chem. Eng. Sci. 40 (1985) 1917.Google Scholar
  4. [4]
    C.A. Mims, L.E. McCandlish and M.T. Melchior, Catal. Lett. 1 (1988) 121.Google Scholar
  5. [5]
    C.A. Mims, L.E. McCandlish and M.T. Melchior,Proc. 9th Int. Congress of Catalysis, Vol. IV, (1988) p. 1992.Google Scholar
  6. [6]
    E. Iglesia, S.C. Reyes and R.J. Madon, J. Catal. 129 (1991) 238.Google Scholar
  7. [7]
    R.J. Madon, S.C. Reyes and E. Iglesia, J. Phys. Chem. 95 (1991) 7795.Google Scholar
  8. [8]
    F.A.P. Cavalcanti, R. Oukaci, I. Wender and D.G. Blackmond, J. Catal. 123 (1990) 270.Google Scholar
  9. [9]
    Y. Kobori, H. Yamasaki, S. Naito, T. Onishi and K. Tamaru, J. Chem. Soc. Faraday Trans. I 78 (1982) 1473.Google Scholar
  10. [10]
    D.S. Jordan and A.T. Bell, J. Phys. Chem. 90 (1986) 4797.Google Scholar
  11. [11]
    C.A. Mims, J.J. Krajewski, K.D. Rose and M.T. Melchior, Catal. Lett. 7 (1990) 119.Google Scholar
  12. [12]
    K.R. Krishna and A.T. Bell, J. Catal., in press.Google Scholar
  13. [13]
    R. Snel and R.L. Espinoza, J. Mol. Catal. 43 (1987) 237.Google Scholar
  14. [14]
    A.A. Adesina, R.R. Hudgins and P.L. Silveston, App. Catal. 62 (1990) 295.Google Scholar
  15. [15]
    S.R. Morris, R.B. Hayes, P.B. Wells and R. Whyman, J. Catal. 96 (1985) 23.Google Scholar
  16. [16]
    P. Winslow and A.T. Bell, J. Catal. 86 (1984) 186; 91 (1983) 142; 94 (1985) 385.Google Scholar
  17. [17]
    G.A. Somorjai,Chemistry in Two Dimensions: Surfaces (Cornell Univ. Press, Ithaca, 1981).Google Scholar
  18. [18]
    S. Nowak, R. Madon and H.J. Suhl, J. Chem. Phys. 74 (1981) 6083.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1992

Authors and Affiliations

  • Kamala R. Krishna
    • 1
  • Alexis T. Bell
    • 1
  1. 1.Chemical Sciences Division, Lawrence Berkeley Laboratory, and Department of Chemical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations