Skip to main content
Log in

Modulation of inner mitochondrial membrane channel activity

  • Minireview
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Three classes of inner mitochondrial membrane (IMM) channel activities have been defined by direct measurement of conductance levels in membranes with patch clamp techniques in 150 mM K Cl. The “107 pS activity” is slightly anion selective and voltage dependent (open with matrix positive potentials). “Multiple conductance channel” (MCC) activity includes several levels from about 40 to over 1000 pS and can be activated by voltage or Ca2+. MCC may be responsible for the Ca2+-induced permeability transition observed with mitochondrial suspensions. A “low conductance channel” (LCC) is activated by alkaline pH and inhibited by Mg2+. LCC has a unit conductance of about 15 pS and may correspond to the inner membrane anion channel, IMAC, which was proposed from results obtained from suspension studies. All of the IMM channels defined thus far appear to be highly regulated and have a low open probability under physiological conditions. A summary of what is known about IMM channel regulation and pharmacology is presented and possible physiological roles of these channels are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P., and Zorov, D. B. (1988).J. Cell Biol. 107, 481–495.

    Google Scholar 

  • Antonenko, Yu N., Kinnally, K. W., and Tedeschi, H. (1991a).J. Membr. Biol. 124, 151–158.

    Google Scholar 

  • Antonenko, Yu N., Kinnally, K. W., Perini, S., and Tedeschi, H. (1991b).FEBS Lett. 285, 89–93.

    Google Scholar 

  • Bakeeva, L. E., Chenstov, Yu. S., and Skulachev, V. P. (1983).J. Mol. Cell. Cardiol. 15, 413–420.

    Google Scholar 

  • Beavis, A. D., and Garlid, K. D. (1987).J. Biol. Chem. 262, 15085–15093.

    Google Scholar 

  • Beavis, A. D. (1989).J. Biol. Chem. 264, 1508–1515.

    Google Scholar 

  • Beavis, A. D., and Powers, M. F. (1989).J. Biol. Chem. 264, 17148–17155.

    Google Scholar 

  • Beavis, A. D. (1992).J. Bioenerg. Biomembr. 24, 77–90.

    Google Scholar 

  • Bertl, A., and Slayman, C. (1991).Biophys. J. 59, 391a.

  • Benz, R., and Brdiczka, D. (1992).J. Bioenerg. Biomembr. 24, 33–40.

    Google Scholar 

  • Blatz, A. L., and Magleby, K. L. (1983).Biophys. J. 43, 237–241.

    Google Scholar 

  • Campo, M. L., Kinnally, K. W., and Tedeschi, H. (1990). 634th Meeting of the Biochemical Society Abstracts.

  • Costa, G., Kinnally, K. W., and Diwan, J. J. (1991).Biochem. Biophys. Res. Commun. 175, 305–310.

    Google Scholar 

  • Decker, G. L., and Greenawalt, J. W. (1977).J. Ultrastruct. Res. 59, 44–56.

    Google Scholar 

  • Fagian, M. M., Pereira-da-Silva, L., Martins, I. S., and Vercesi, A. E. (1990).J. Biol. Chem. 265, 19955–19960.

    Google Scholar 

  • Garlid, K. D., and Beavis, A. D. (1986).Biochim. Biophys. Acta 853, 187–204.

    Google Scholar 

  • Gray, P. T. A., Bevan, S., and Ritchie, J. M. (1984).Proc. R. Soc. London B 221, 395–409.

    Google Scholar 

  • Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. C, Cell Physiol. 27, 755–786.

    Google Scholar 

  • Henry, J.-P., Chich, J.-F., Goldschmidt, D., and Thieffry, M. (1989).J. Membr. Biol. 112, 139–147.

    Google Scholar 

  • Holden, M. J., and Colombini, M. (1988).FEBS Lett. 241, 105–109.

    Google Scholar 

  • Hunter, D. R., Haworth, R. A., and Southward, J. H. (1976).J. Biol. Chem. 251, 5069–5077.

    Google Scholar 

  • Inoue, I., Nagase, H., Kishi, K., and Higuti, T. (1991).Nature (London)352, 244–247.

    Google Scholar 

  • Jeng, A. Y., and Shamoo, A. E. (1980),J. Biol. Chem. 255, 6897–6903.

    Google Scholar 

  • Jezek, P., and Garlid, K. D. (1990)J. Biol. Chem. 265, 19303–19311.

    Google Scholar 

  • Kinnally, K. W., Campo, M. L., and Tedeschi, H. (1989).J. Bioenerg. Biomembr. 21, 497–506.

    Google Scholar 

  • Kinnally, K. W., Zorov, D. B., Antonenko, Yu N., and Perini, S. (1991).Biochem. Biophys. Res. Commun. 176, 1183–1188.

    Google Scholar 

  • Klitsch, T., and Siemen, D. (1991).J. Membr. Biol. 122, 69–75.

    Google Scholar 

  • Kolhardt, M., and Fichtner, H. (1988).J. Membr. Biol. 102, 105–119.

    Google Scholar 

  • Krouse, M. E., Schneider, G. T., and Gage, P. W. (1986).Nature (London)319, 58–60.

    Google Scholar 

  • Last, T. A., Gantzer, M. L., and Tyler, C. D. (1983).J. Biol. Chem. 258, 2399–2404.

    Google Scholar 

  • Meves, H., and Nagy, K. (1989).Biochim. Biophys. Acta 988, 99–105.

    Google Scholar 

  • Mirazabekov, T., and Ermishkin, L. N. (1989).FEBS Lett. 249, 375–78.

    Google Scholar 

  • Mironova, G. D., Fedotcheva, N. I., Makarov, P. R., Pronevich, L. A., and Mironov, G. P. (1981).Biofizika 26, 451–457.

    Google Scholar 

  • Mironova, G. D., Sirota, T. J., Pronevich, L. A., Trofimenko, N. V., Mironov, G. P., Grigorjev, P. A., and Kandrashova, M. N. (1982),J. Bioenerg. Biomembr. 14, 213–225.

    Google Scholar 

  • Moczydlowski, E. (1986). InIon Channel Reconstitution (Miller, C. ed.), Plenum Press, New York, pp. 75–113.

    Google Scholar 

  • Moran, O., Sandri, G., Panfili, E., Stühmer, W., and Sorgato, M. C. (1990).J. Biol. Chem. 265, 908–913.

    Google Scholar 

  • Moran, O., and Sorgato, M. C. (1992).J. Bioenerg. Biomembr. 24, 91–98.

    Google Scholar 

  • Panfili, E., Sandri, G., Liut, G., Stancher, B., and Sottocasa, G. L. (1983). InCa 2+ Binding Proteins (de Bernard, B., Sottocasa, G. L., Sandri, G., Carafoli, E., Taylor, A. N., Vanaman, T. C., and Williams, R. J. P., eds.), Elsevier, Amsterdam, New York, pp. 347–364.

    Google Scholar 

  • Petronilli, V., Szabò, I., and Zoratti, M. (1989).FEBS Lett. 259, 137–143.

    Google Scholar 

  • Powers, M. F., and Beavis, A. D. (1991)Biophys. J. 59, 596a.

    Google Scholar 

  • Sachs, F. (1983). InSingle-Channel Recording (Sakmann, B., and Neher, E., eds.), Plenum Press, New York, 365–376.

    Google Scholar 

  • Sandri, G., Siagri, M., and Panfili, E. (1988).Cell Calcium 9, 159–165.

    Google Scholar 

  • Schwaiger, M., Herzog, V., and Neupert, W. (1987).J. Cell Biol. 105, 235–246.

    Google Scholar 

  • Selwyn, M. J., Dawson, A. P., and Fulton, D. V. (1979).Biochem. Soc. Trans. 7, 216–219.

    Google Scholar 

  • Singer, S. J., Maher, P. A., and Yaffe, M. P. (1978).Proc. Natl. Acad. Sci. USA 84, 1015–1019.

    Google Scholar 

  • Sorgato, M. C., Keller, B. U., and Stühmer, W. (1987).Nature (London)330, 498–500.

    Google Scholar 

  • Sorgato, M. C., Moran, O., De Pinto, V., Keller, B. U., and Stühmer, W. (1989).J. Bioenerg. Biomembr. 21, 485–496.

    Google Scholar 

  • Szabó, I., and Zoratti, M. (1991).J. Biol. Chem. 266, 3376–3379.

    Google Scholar 

  • Szabó, I., and Zoratti, M. (1992).J. Bioenerg. Biomembr. 24, 111–118.

    Google Scholar 

  • Tedeschi, H. (1981).Biochim. Biophys. Acta 639, 157–196.

    Google Scholar 

  • Tedeschi, H., Mannella, C., and Bowman, C. (1987).J. Membr. Biol. 97, 21–29.

    Google Scholar 

  • Zorov, D. B., Kinnally, K. W., Perini, S., and Tedeschi, H. (1991).Biophys. J. 59, 216a.

    Google Scholar 

  • Zorov, D. B., Kinnally, K. W., and Tedeschi, H. (1992).J. Bioenerg. Biomembr. 24, 119–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinnally, K.W., Antonenko, Y.N. & Zorov, D.B. Modulation of inner mitochondrial membrane channel activity. J Bioenerg Biomembr 24, 99–110 (1992). https://doi.org/10.1007/BF00769536

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769536

Key words

Navigation