Journal of Bioenergetics and Biomembranes

, Volume 24, Issue 1, pp 71–75 | Cite as

Evidence for extra-mitochondrial localization of the VDAC/porin channel in eucaryotic cells

  • Friedrich P. Thinnes


The expression of bacterial porin in outer membranes of gram-negative bacteria and of mitochondrial porin or voltage-dependent anion channel (VDAC) in outer mitochondrial membranes (OMM) of eucaryotic cells was demonstrated about 15 years ago. However, the expression of VDAC in the plasmalemma (PLM) of transformed human B lymphoblasts has recently been indicated by cytotoxicity and indirect immunofluorescence studies. New data suggest that the expression of VDAC may be even more widespread. Different cell types express porin channels in their PLM and in intracellular membranes other than OMM. The functional expression of these channels may differ in the various compartments since recent experiments have demonstrated that the voltage dependence and ion selectivity of mitochondrial VDAC may be altered by their interaction with modulators. The present paper proposes a unifying concept for the ion-selective channels of cell membranes, in particular, those whose regulation is affected in cystic fibrosis.

Key words

Porin VDAC plasma membrane cystic fibrosis chloride channel sodium channel long-term potentiation long-term depression endosymbiotic theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1989).Molecular Biology of the Cell, 2nd edn., Garland Publishing, New York and London.Google Scholar
  2. Benz, R. (1988).Annu. Rev. Microbiol. 42, 359–93.Google Scholar
  3. Benz, R., Wojtczak, L., Bosch, W., and Brdiczka, D. (1988).FEBS Lett. 231, 75–80.Google Scholar
  4. Benz, R., Kottke, M., and Brdiczka, D. (1990).Biochim. Biophys. Acta 1022, 311–318.Google Scholar
  5. Blachly-Dyson, E., and Forte, M. (1991).Biophys. J. 59, 216a.Google Scholar
  6. Blatz, A. L., and Magleby, K. L. (1983).Biophys. J. 43, 237–241.Google Scholar
  7. Boucher, R. C., Cotton, C. U., Gatzy, J. T., Knowles, M. R., and Yankaskas, J. R. (1988).J. Physiol. 405, 77–103.Google Scholar
  8. Fiek, C., Benz, R., Roos, N., and Brdiczka, D. (1982).Biochim. Biophys. Acta 688, 429–440.Google Scholar
  9. Frizzell, R. A., and Cliff, W. H. (1991).Nature (London)350, 277–278.Google Scholar
  10. Gögelein, H. (1988).Biochim. Biophys. Acta 947, 521–547.Google Scholar
  11. Goldman, R. S., Chavez-Noriega, L. E., and Stevens, Ch. F. (1990).Proc. Natl. Acad. Sci. USA 87, 7165–7169.Google Scholar
  12. Gray, M. W. (1989).Trends Genet. 5, 294–299.Google Scholar
  13. Hamill, O. P., Bormann, J., and Sakmann, B. (1983).Nature (London)305, 805–808.Google Scholar
  14. Holden, M. J., and Colombini, M. (1988).FEBS Lett. 241, 105–109.Google Scholar
  15. Jorissen, M., Vereecke, J., Carmeliet, E., Van den Berghe, H., and Cassiman, J.-J. (1991).Biochim. Biophys. Acta 1096, 52–59.Google Scholar
  16. Jürgens, L., Ilsemann, P., Kratzin, H. D., Hesse, D., Eckart, K., Thinnes, F. P., and Hilschmann, N. (1991).Biol. Chem. Hoppe-Seyler 372, 455–463.Google Scholar
  17. Kayser, H., Kratzin, H. D., Thinnes, F. P., Götz, H., Schmidt, W. E., Eckart, K., and Hilschmann, N. (1989).Biol. Chem. Hoppe-Seyler 370, 1265–1278.Google Scholar
  18. König, U., Götz, H., Walter, G., Babel, D., Hohmeier, H.-E., Thinnes, F. P., and Hilschmann, N. (1991).Biol. Chem. Hoppe-Seyler 372, 565–572.Google Scholar
  19. Kolb, H.-A., Brown, C. D. A., and Murer, H. (1985).Pflügers Arch. 403, 262–265.Google Scholar
  20. Lindén, M., Andersson, G., Gellerfors, P., and Nelson, B. D. (1984).Biochim. Biophys. Acta 770, 93–96.Google Scholar
  21. McEnergy, M. W., Snowman, A. M., Thompson, E. E., and Snyder, S. H. (1991).Biophys. J. 59, 200a.Google Scholar
  22. McPherson, M. A., and Dormer, R. L. (1991).Mol. Aspects Med. 12, 1–81.Google Scholar
  23. Nakae, T. (1976).Biochem. Biophys. Res. Commun. 71, 877–884.Google Scholar
  24. Parham, P. (1991).Nature (London)351, 271–272.Google Scholar
  25. Parry, D. M., and Pedersen, P. L. (1990).J. Biol. Chem. 265, 1059–1066.Google Scholar
  26. Schein, S. J., Colombini, M., and Finkelstein, A. (1976).J. Membr. Biol. 30, 99–120.Google Scholar
  27. Schlichter, L. C., Grygorczyk, R., Pahapill, P. A., and Grygorczyk, C. (1990).Pflügers Arch. 416, 413–421.Google Scholar
  28. Schwarze, W., and Kolb, H.-A. (1984).Pflügers Arch. 402, 281–291.Google Scholar
  29. Simon, S. M., and Blobel, G. (1991).Cell 65, 371–380.Google Scholar
  30. Simon, S. M., Blobel, G., and Zimmerberg, J. (1989).Proc. Natl. Acad. Sci. USA 86, 6176–6180.Google Scholar
  31. Thinnes, F. P., Götz, H., Kayser, H., Benz, R., Schmidt, W. E., Kratzin, H. D., and Hilschmann, N. (1989).Biol. Chem. Hoppe-Seyler 370, 1253–1264.Google Scholar
  32. Thinnes, F. P., Schmid, A., Benz, R., and Hilschmann, N. (1990).Biol. Chem. Hoppe-Seyler 371, 1047–1050.Google Scholar
  33. Thinnes, F. P., Babel, D., Hein, A., Jürgens, L., König, U., Schmid, A., and Hilschmann, N. (1991).Klin. Wochenschr. 69, 283–288.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Friedrich P. Thinnes
    • 1
  1. 1.Abteilung ImmunchemieMax-Planck-Institut für Experimentelle MedizinGöttingenGermany

Personalised recommendations