Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 24, Issue 1, pp 55–61 | Cite as

Binding of a synthetic targeting peptide to a mitochondrial channel protein

  • Carmen A. Mannella
  • Xiao Wei Guo
  • James Dias
Research Paper

Abstract

Membrane crystals of the mitochondrial outer membrane channel VDAC (porin) fromNeurospora crassa were incubated with a 20-amino-acid synthetic peptide corresponding to the N-terminal targeting region of subunit IV of cytochrome oxidase. The peptide caused disordering and contraction of the crystal lattice of the membrane arrays. Also, new stain-excluding features were observed on the peptide-treated arrays which most likely correspond to sites at which the peptide accumulates. The stain exclusion zones associated with binding of the targeting peptide (and with binding of apocytochromec in an earlier study) have been localized on a two-dimensional density map of frozen-hydrated, crystalline VDAC previously obtained by cryo-electron microscopy. The results indicate that both the peptide and cytochromec bind to protein “arms” which extend laterally between the channel lumens. The finding that imported polypeptides bind to a specific region of the VDAC protein implicates this channel in the process by which precursor proteins are recognized at and translocated across the mitochondrial outer membrane.

Key words

Mitochondrial channels mitochondrial targeting sequences electron microscopy computer image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, K. P., and Schatz, G. (1991).Nature (London) 349 205–208.Google Scholar
  2. Benz, R. (1985).CRC Crit. Rev. Biochem. 19 145–190.Google Scholar
  3. Colombini, M. (1979).Nature (London) 279 643–645.Google Scholar
  4. Colombini, M., Yeung, C. L., Tung, J., König, T. (1987).Biochim. Biophys. Acta 905 279–286.Google Scholar
  5. De Jongh, H. H. J., and De Kruijff, B. (1990).Biochim. Biophys. Acta 1029 105–112.Google Scholar
  6. De Pinto, V., Ludwig, O., Krause, J., Benz, R., and Palmieri, F. (1987).Biochim. Biophys. Acta 894 109–119.Google Scholar
  7. Dihanich, M., Suda, K., and Schatz, G. (1987).EMBO J. 6 723–728.Google Scholar
  8. Dihanich, M., Schmid, A., Oppliger, W., and Benz, R. (1989).Eur. J. Biochem. 181 703–708.Google Scholar
  9. Dumont, M. E., and Richards, F. M. (1984).J. Biol. Chem. 259 4147–4156.Google Scholar
  10. Frank, J. (1982).Optik 63 67–89.Google Scholar
  11. Frank, J., Shimkin, B., and Dowse, H. (1981).Ultramicroscopy 6 343–358.Google Scholar
  12. Freitag, H., Neupert, W., and Benz, R. (1982).Eur. J. Biochem. 123 629–639.Google Scholar
  13. Glaser, S. M., and Cumsky, M. G. (1990).J. Biol. Chem. 265 8808–8816.Google Scholar
  14. Goldfarb, W., Frank, J., Kessel, M., Jsung, J. C., Kim, C. H., and King, T. E. (1979). InCytochrome Oxidase (King, T. E., Orii, Y., Chance, B., and Okunuki, K., eds.), Elsevier North-Holland Biomedical Press, Amsterdam, pp. 161–175.Google Scholar
  15. Hartl, F. U., Pfanner, N., Nicholson, D. W., and Neupert, W. (1989).Biochim. Biophys. Acta 988 1–45.Google Scholar
  16. Henry, J. P., Chich, J. F., Goldschmidt, D., and Thieffry, M. (1989).J. Membr. Biol. 112 139–147.Google Scholar
  17. Holden, M. J., and Colombini, M. (1988).FEBS Lett. 241 105–109.Google Scholar
  18. Jordi, W., De Kruijff, B., and Marsh, D. (1989).Biochemistry 28 8998–9005.Google Scholar
  19. Kleene, R., Pfanner, N., Pfaller, R., Link, T., Sebald, W., Neupert, W., and Tropschug, M. (1987).EMBO J. 6 2627–2633.Google Scholar
  20. Lemire, B. D., Fankhauser, C., Baker, A., and Schatz, G. (1989).J. Biol. Chem. 264 20206–20215.Google Scholar
  21. Mannella, C. A. (1984).Science 224 165–166.Google Scholar
  22. Mannella, C. A. (1986).Methods Enzymol. 125 595–610.Google Scholar
  23. Mannella, C. A. (1989).J. Bioenerg. Biomembr. 21 427–437.Google Scholar
  24. Mannella, C. A. (1990).Experientia 46 137–145.Google Scholar
  25. Mannella, C. A., and Guo, X. W. (1990).Biophys. J. 57 23–31.Google Scholar
  26. Mannella, C. A., Ribeiro, A. J., and Frank, J. (1986).Biophys. J. 49 307–318.Google Scholar
  27. Mannella, C. A., Ribeiro, A. J., and Frank, J. (1987).Biophys. J. 51 221–226.Google Scholar
  28. Mannella, C. A., Guo, X. W., and Cognon, B. (1989).FEBS Lett. 253 231–234.Google Scholar
  29. Pfanner, N., Söllner, T., and Neupert, W. (1991).Trends Biochem. Sci. 16 63–67.Google Scholar
  30. Roise, D. (1988).Prog. Clin. Biol. Res. 282 43–53.Google Scholar
  31. Roise, D., Horvath, S. J., Tomich, J. M., Richards, J. H., and Schatz, G. (1986).EMBO J. 5 1327–1334.Google Scholar
  32. Roise, D., Theiler, F., Horvath, S. J., Tomich, J., Richards, J. H., Allison, D. S., and Schatz, G. (1988).EMBO J. 7 649–653.Google Scholar
  33. Sachs, M. S., David, M., Werner, S., and RajBhandary, U. L. (1986).J. Biol. Chem. 261 869–873.Google Scholar
  34. Saxton, W. O. (1980). InElectron microscopy at molecular dimensions (Baumeister, W., and Vogell, W. eds.), Springer-Verlag GmbH and Co., KG, Berlin, pp. 244–255.Google Scholar
  35. Skerjanc, I. S., Shore, G. C., and Silvius, J. R. (1987).EMBO J. 6 3117–3123.Google Scholar
  36. Sprinkle, J. R., Hakvoort, T. B. M., Koshy, T. I., Miller, D. D., and Margoliash, E. (1990).Biochemistry 87 5729–5733.Google Scholar
  37. Tamm, L. K. (1986).Biochemistry 25, 7470–7476.Google Scholar
  38. Tamm, L. K., and Bartoldus, I. (1990).FEBS Lett. 272 29–33.Google Scholar
  39. Von Heijne, G. (1986).EMBO J. 5 1335–1342.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Carmen A. Mannella
    • 1
    • 2
  • Xiao Wei Guo
    • 1
  • James Dias
    • 1
    • 2
  1. 1.Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbany
  2. 2.Department of Biomedical Sciences, School of Public HealthState University of New York at AlbanyAlbany

Personalised recommendations