Skip to main content
Log in

Hexokinase receptors: Preferential enzyme binding in normal cells to nonmitochondrial sites and in transformed cells to mitochondrial sites

  • Minireview
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Hexokinase plays an important role in normal glucose-utilizing tissues like brain and kidney, and an even more important role in highly malignant cancer cells where it is markedly overexpressed. In both cell types, normal and transformed, a significant portion of the total hexokinase activity is bound to particulate material that sediments upon differential centrifugation with the crude “mitochondrial” fraction. In the case of brain, particulate binding may constitute most of the total hexokinase activity of the cell, and in highly malignant tumor cells as much as 80 percent of the total. When a variety of techniques are rigorously applied to better define the particulate location of hexokinase within the crude “mitochondrial fraction,” a striking difference is observed between the distribution of hexokinase in normal and transformed cells. Significantly, particulate hexokinase found in rat brain, kidney, or liver consistently distributes with nonmitochondrial membrane markers whereas the particulate hexokinase of highly glycolytic hepatoma cells distributes with outer mitochondrial membrane markers. These studies indicate that within normal tissues hexokinase binds preferentially to non-mitochondrial receptor sites but upon transformation of such cells to yield poorly differentiated, highly malignant tumors, the overexpressed enzyme binds preferentially to outer mitochondrial membrane receptors. These studies, taken together with the well-known observation that, once solubilized, the particulate hexokinase from a normal tissue can bind to isolated mitochondria, are consistent with the presence in normal tissues of at least two different types of particulate receptors for hexokinase with different subcellular locations. A model which explains this unique transformation-dependent shift in the intracellular location of hexokinase is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora, K. K., and Pedersen, P. L. (1988).J. Biol. Chem. 263, 17422–17428.

    Google Scholar 

  • Arora, K. K., Fanciulli, M., and Pedersen, P. L. (1990).J. Biol. Chem. 265, 6481–6488.

    Google Scholar 

  • Ball, E. H., and Finger, S. J. (1982).Proc. Natl. Acad. Sci. USA 79, 123–126.

    Google Scholar 

  • Ballatori, N., and Cohen, J. J. (1981).Biochim. Biophys. Acta. 657, 448–456.

    Google Scholar 

  • BeltrandelRio, H., and Wilson, J. E. (1991).Arch. Biochem. Biophys. 286, 183–194.

    Google Scholar 

  • Black, S. D., and Coon, M. J. (1982).J. Biol. Chem. 257, 5929–5938.

    Google Scholar 

  • Bustamante, E., and Pedersen, P. L. (1977).Proc. Natl. Acad. Sci. USA 74, 3735–3739.

    Google Scholar 

  • Bustamante, E., Morris, H. P., and Pedersen, P. L. (1981).J. Biol. Chem. 256, 8699–8704.

    Google Scholar 

  • Clark, F. M., and Morton, D. J. (1982).Biochem. Biophys. Res. Commun. 109, 388–393.

    Google Scholar 

  • Craven, P. A., Goldblatt, P. J., and Basford, R. E. (1969).Biochemistry 8, 3525–3532.

    Google Scholar 

  • Dorbani, L., Jancsik, V., Linden, M., Leterrier, J. F., Nelson, B., and Rendon, A. (1987).Arch. Biochem. Biophys. 252, 188–196.

    Google Scholar 

  • Felgner, P. L., Messer, J. L., and Wilson, J. E. (1979).J. Biol. Chem. 254, 4946–4949.

    Google Scholar 

  • Fiskum, G., and Lehninger, A. L. (1982). InCalcium and Cell Function (Cheung, W. Y., ed.), Vol. 2, Academic Press, New York, pp. 39–80.

    Google Scholar 

  • Haugen, D. A., Armes, L. G., Yasunobu, K. T., and Coon, M. J. (1977).Biochem. Biophys. Res. Commun. 77, 967–973.

    Google Scholar 

  • Heinemann, F. S., and Ozols, J. (1984).J. Biol. Chem. 259, 797–804.

    Google Scholar 

  • Katzen, H. M., Soderman, D. D., and Wiley, C. E. (1970).J. Biol. Chem. 245, 4081–4096.

    Google Scholar 

  • Kottke, M., Adams, V., Riesinger, I., Bremm, G., Bosch, W., Brdiczka, D., Sandri, G., and Panfili, E. (1988).Biochim. Biophys. Acta. 935, 87–102.

    Google Scholar 

  • Knull, H. R. (1978).Biochim. Biophys. Acta. 522, 1–9.

    Google Scholar 

  • Kurokawa, M., Kimura, J., Tokuoka, S., and Ishibashi, S. (1979).Brain Res. 175, 169–173.

    Google Scholar 

  • Lachaal, M., Wilson, J. E., and Jung, C. Y. (1990).The FASEB J. 4(7), Abstr. No. 1230.

  • Lusk, J. A., Manthorpe, C. M., Kao-Jen, J., and Wilson, J. E. (1980).J. Neurochem. 34, 1412–1420.

    Google Scholar 

  • Lynch, R. M., Fogarty, K. E., and Fay, F. S. (1991).J. Cell. Biol. 112, 385–395.

    Google Scholar 

  • Nakashima, R. A., Mangan, P. S., Colombini, M., and Pedersen, P. L. (1986).Biochemistry 25, 1015–1021.

    Google Scholar 

  • Parry, D. M., and Pedersen, P. L. (1983).J. Biol. Chem. 258, 10904–10912.

    Google Scholar 

  • Parry, D. M., and Pedersen, P. L. (1984).J. Biol. Chem. 259, 8917–8923.

    Google Scholar 

  • Parry, D. M., and Pedersen, P. L. (1990).J. Biol. Chem. 265, 1059–1066.

    Google Scholar 

  • Pedersen, P. L., Greenawalt, J. W., Reynafarje, B., Hullihen, J., Decker, G. L., Soper, J. W., and Bustamante, E. (1978).Methods Cell Biol. 20, 411–481.

    Google Scholar 

  • Polakis, P. G., and Wilson, J. E. (1985).Arch. Biochem. Biophys. 236, 328–337.

    Google Scholar 

  • Rose, I. A., and Warms, J. V. B. (1967).J. Biol. Chem. 242, 1635–1645.

    Google Scholar 

  • Schnaitman, C., and Greenawalt, J. W. (1968).J. Cell Biol. 38, 158–175.

    Google Scholar 

  • Schwab, D. A., and Wilson, J. E. (1989).Proc. Natl. Acad. Sci. USA 86, 2563–2567.

    Google Scholar 

  • Walsh, J. L., and Knull, H. R. (1987).Biochim. Biophys. Acta 952, 83–91.

    Google Scholar 

  • Walsh, J. L., Keith, T. J., and Knull, H. R. (1989).Biochim. Biophys. Acta 999, 64–70.

    Google Scholar 

  • Weber, G. (1972).Gann Monogr. Cancer Res. 13, 47–77.

    Google Scholar 

  • Weinhouse, S. (1972).Cancer Res. 32, 2007–2016.

    Google Scholar 

  • Wilson, J. E. (1984). InRegulation of Carbohydrate Metabolism (Beitner, R., ed.), Vol. 1, CRC Press, Boca Raton, Florida, pp. 45–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, K.K., Parry, D.M. & Pedersen, P.L. Hexokinase receptors: Preferential enzyme binding in normal cells to nonmitochondrial sites and in transformed cells to mitochondrial sites. J Bioenerg Biomembr 24, 47–53 (1992). https://doi.org/10.1007/BF00769530

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769530

Key words

Navigation