Strength of Materials

, Volume 12, Issue 4, pp 490–494 | Cite as

Stress-concentration minimization for an elastic plane with an elliptical hole in a highly anisotropic elastic material

  • Yu. A. Bogan
Scientific-Technical Section

Keywords

Elastic Material Elastic Plane Elliptical Hole Anisotropic Elastic Material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. W. Morland, “A plane theory of inextensible transversely isotropic elastic composites,” Int. J. Solids Struct.,9, No. 12, 1501–1518 (1973).Google Scholar
  2. 2.
    G. I. Éskin, “Boundary-value problems for equations with constant coefficients,” Mat. Sb., 59 (101), 87–104 (1962).Google Scholar
  3. 3.
    Yu. A. Bogan, “Formulation of a limiting problem for a highly anisotropic elastic strip,” in: Dynamics of Continuous Media [in Russian], No. 28, Novosibirsk (1977), pp 130–135.Google Scholar
  4. 4.
    S. G. Lekhnitskii, The Theory of Elasticity of Anisotropic Bodies [in Russian], Nauka, Moscow (1977).Google Scholar
  5. 5.
    G. H. Hardy and W. W. Rogosinski, Fourier Series, Cambridge Univ. Press (1956).Google Scholar
  6. 6.
    E. A. Volkov, “The differential features of solutions to boundary-value problems for the Laplace equation on polygons,” Tr. Mosk. Inst. Akad. Nauk im. V. A. Steklova,67, 113–142 (1965).Google Scholar
  7. 7.
    W. Eckhaus, “Boundary layers in linear elliptic singular perturbation problems,” SIAM Rev.,14, No. 2, 225–270 (1972).Google Scholar
  8. 8.
    V. B. Lipkin, “Stress concentration in an orthotropic plate weakened by a circular hole in pure bending,” Inzh. Sb.,26, 179–187 (1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Yu. A. Bogan
    • 1
  1. 1.Institute of Hydrodynamics, Siberian BranchAcademy of Sciences of the USSRNovosibirsk

Personalised recommendations