Boundary-Layer Meteorology

, Volume 3, Issue 1, pp 113–134 | Cite as

Similarity criteria for the application of fluid models to the study of air pollution meteorology

  • William H. Snyder


Similarity criteria for modeling atmospheric flows in air and water are reviewed. It is shown that five nondimensional parameters plus a set of nondimensional boundary conditions must be matched in model and prototype. The neglect of the Rossby number can lead to serious errors in modeling of diffusion in a prototype with a length scale greater than about five kilometers. The Reynolds number, the Peclet number and the Reynolds-Schmidt product criteria may be neglected if the model flow is of sufficiently high Reynolds number. The Froude number criterion appears to be the most important. The complete specification of boundary conditions is found to be nebulous, but is discussed in some detail. Over-roughening of the model surface may be necessary to satisfy a roughness Reynolds number criterion. Both air and water appear to be suitable fluids to use as modeling media.


Reynolds Number Froude Number High Reynolds Number Modeling Medium Peclet Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, M.: 1941, ‘Mountain Clouds, Their Forms and Connected Air Currents’,Part II, Bull. Cent. Meteor. Obs., Tokyo.7, No. 3.Google Scholar
  2. Armitt, J. and Counihan, J.: 1968, ‘The Simulation of the Atmospheric Boundary Layer in a Wind Tunnel’,Atmos. Envir. 2, 49–71.Google Scholar
  3. Batchelor, G. K.: 1949, ‘Diffusion in a Field of Homogeneous Turbulence. I. Eulerian Analysis’,Austral. J. Sci. Res., Ser. A. 2, 437–50.Google Scholar
  4. Batchelor, G. K.: 1953, ‘The Conditions for Dynamical Similarity of Motions of a Frictionless Perfect-Gas Atmosphere’,Quart. J. Roy. Meteorol. Soc. 79, 224–235.Google Scholar
  5. Birkhoff, G.: 1950,Hydrodynamics, Princeton Univ. Press, 186 pp.Google Scholar
  6. Cermak, J. E. and Peterka, J.: 1966, ‘Simulation of Wind Fields over Point Arguello, Calif. by Wind Tunnel Flow over a Topographic Model’, Report to Navy under Contract N123(61756)34361A (PMR), Colo. State. Univ.Google Scholar
  7. Cermak, J. E., Sandborn, V. A., Plate, E. J., Binder, G. H., Chuang, H., Meroney, R. N., and Ito, S.: 1966, ‘Simulation of Atmospheric Motion by Wind Tunnel Flows’, Report to Army under Grant DA-AMC-28-043-G20, Colo. State Univ.Google Scholar
  8. Chaudhry, F. H. and Cermak, J. E.: 1971, ‘Simulation of Flow and Diffusion over an Urban Complex’, Paper presented at Conf. on Air Poll. Meteorol., Raleigh, N. C., April 5–9.Google Scholar
  9. Corrsin, S.: 1953, ‘Remarks on Turbulent Heat Transfer’,Proc. First Iowa Thermo. Symp., State Univ. of Iowa, Iowa City, pp. 5–30.Google Scholar
  10. Corrsin, S.: 1961a, ‘Turbulent Flow’,Amer. Sci. 49, 300–325.Google Scholar
  11. Corrsin, S.: 1961b, ‘Theories of Turbulent Dispersion’,Mechanique de la Turbulence, Marseille, France.Google Scholar
  12. Corrsin, S.: 1963, ‘Turbulence: Experimental Methods’,Handbuch der Physik,VIII/2, Springer Verlag, Berlin.Google Scholar
  13. Corrsin, S.: 1964, ‘Further Generalization of Onsager's Cascade Model for Turbulent Spectra’,Phys. Fluids 7, 1156–9.Google Scholar
  14. Csanady, G. T.: 1969, ‘Diffusion in an Ekman Layer’,J. Atmos. Sci. 26, 414–426.Google Scholar
  15. Fuquay, J. J., Simpson, C. L., and Hinds, W. T., 1964: ‘Prediction of Environmental Exposures from Sources near the Ground Based on Hanford Experimental Data’,J. Appl. Meteorol. 3, 761–770.Google Scholar
  16. Golden, J.: 1961, ‘Scale Model Techniques’, M. S. Thesis, College of Engr., New York Univ.Google Scholar
  17. Halitsky, J., Golden, J., Halpern, P., and Wu, P.: 1963, ‘Wind Tunnel Tests of Gas Diffusion from a Leak in the Shell of a Nuclear Power Reactor and from a Nearby Stack’, Geophys. Sci. Lab. Rept. 63-2, Dept. of Met. and Ocean., New York Univ.Google Scholar
  18. Hidy, G. M.: 1967, ‘Adventures in Atmospheric Simulation’,Bull. Am. Meteorol. Soc. 48, 143–161.Google Scholar
  19. Hinze, J. O.: 1959,Turbulence, McGraw Hill, 586 pp.Google Scholar
  20. Högström, U.: 1964, ‘An Experimental Study on Atmospheric Diffusion’,Tellus 16, 205–251.Google Scholar
  21. Homma, M.: 1969, ‘Main Research Activities on Air Pollution’, Cent. Res. Inst. of Elect. Power Industry, (Japan), Sept., Unpublished.Google Scholar
  22. Jensen, M.: 1958, ‘The Model-Law for Phenomena in a Natural Wind’,Ingeniøren Int. Ed. 2, No. 4.Google Scholar
  23. Kampé, J. de Fériet: 1939, ‘Les fonctions aléatoires stationnaires et la théorie statistique de la turbulence homogene’,Ann. Soc. Sci. Brux. 59, 145.Google Scholar
  24. Kistler, A. L. and Vrebalovich, J.: 1966, ‘Grid Turbulence at Large Reynolds Numbers’,J. Fluid Mech. 26, 37–47.Google Scholar
  25. Kolmogoroff, A. N.: 1941, ‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers’,Compt. Rend. (Doklady) Acad. Sci. U.S.S.R. 30, 301–305.Google Scholar
  26. Ludwig, G. R. and Sundaram, T. R.: 1969, ‘On the Laboratory Simulation of Small-Scale Atmospheric Turbulence’, Cornell Aero. Lab. Rept. VC-2740-S-1, Buffalo, N. Y.Google Scholar
  27. Lumley, J. L.: 1970,Stochastic Tools in Turbulence, Academic Press, 194 pp.Google Scholar
  28. Lumley, J. L. and Panofsky, H. A.: 1964,The Structure of Atmospheric Turbulence, Interscience, 239 p.Google Scholar
  29. McVehil, G. E., Ludwig, G. R., and Sundaram, T. R.: 1967, ‘On the Feasibility of Modeling Small Scale Atmospheric Motions’, Cornell Aero. Lab. Rept. ZB-2328-P-1, Buffalo, N.Y.Google Scholar
  30. Mery, P.: 1969, ‘Reproduction en Similitude de la Diffusion dans la Couche Limite Atmosphérique’, La Houille Blanche, No. 4 (translated by Air Poll. Tech. Inf. Cent. No. 1104).Google Scholar
  31. Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere’,Geophys. Inst. Acad. Sci., U.S.S.R. 24, 163–187.Google Scholar
  32. Nemoto, S.: 1968, ‘Similarity Between Natural Local Wind in the Atmosphere and Model Wind in a Wind Tunnel’,Papers Meteorol. Geophys. 19, 131–230.Google Scholar
  33. Odell, G. M. and Kovasznay, L. S. G.: 1971, ‘A New Type of Water Channel With Density Stratification’,J. Fluid Mech. 50, 535–544.Google Scholar
  34. Pao, Y-H.: 1965, ‘Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers’,Phys. Fluids 8, 1063–1075.Google Scholar
  35. Pasquill, F.: 1962, ‘Some observed Properties of Medium-Scale Diffusion in the Atmosphere’,Quart. J. Roy. Meteorol. Soc. 88, 70.Google Scholar
  36. Pasquill, F.: 1969, ‘The Influence of the Turning of Wind with Height on Crosswind Diffusion’,Phil. Trans. Roy. Soc. Lond., Ser. A. 265, 173–181.Google Scholar
  37. Saffman, P. G.: 1962, ‘The Effect of Wind Shear on Horizontal Spread from an Instantaneous Ground Source’,Quart. J. Roy. Meteorol. Soc. 88, 382–393.Google Scholar
  38. Smith, E. G.: 1951, ‘The Feasibility of Using Models for Predetermining Natural Ventilation’, Res. Rep. Tex. Eng. Exp. Stn. 26Google Scholar
  39. Smith, F. B.: 1965, ‘The Role of Wind Shear in Horizontal Diffusion of Ambient Particles’,Quart. J. Roy. Meteorol. Soc. 91, 318–329.Google Scholar
  40. Snyder, W. H. and Lumley, J. L.: 1971, ‘Some Measurements of Particle Velocity Autocorrelation Functions in a Turbulent Flow’,J. Fluid Mech. 48, 41–71.Google Scholar
  41. Sutton, O. G.: 1949,Atmospheric Turbulence, Methuen, 111 pp.Google Scholar
  42. Taylor, G. I.: 1921, ‘Diffusion by Continuous Movements’,Proc. Lond. Math. Soc. 20, 196–211.Google Scholar
  43. Townsend, A. A.: 1956,The Structure of Turbulent Shear Flow, Cambridge Univ. Press. 315 pp.Google Scholar
  44. Tyldesley, J. B. and Wallington, C. E.: 1965, ‘The Effect of Wind Shear and Vertical Diffusion on Horizontal Dispersion’,Quart. J. Roy. Meteorol. Soc. 91, 158–174.Google Scholar
  45. Ukeguchi, N., Sakata, H., Okamoto, H., and Ide, Y.: 1967, ‘Study on Stack Gas Diffusion’, Mitsubishi Tech. Bull., No. 52, 1–13.Google Scholar
  46. Wyngaard, J. C.: 1967, ‘An Experimental Investigation of the Small-Scale Structure of Turbulence in a Curved Mixing Layer’, Ph. D. Dissertation, Dept. of Mech. Engr., Penn. State Univ.Google Scholar

Copyright information

© D. Reidel Publishing Company 1972

Authors and Affiliations

  • William H. Snyder
    • 1
  1. 1.Division of MeteorologyNational Environmental Research Center, Environmental Protection AgencyResearch Triangle ParkUSA

Personalised recommendations