Skip to main content
Log in

The mechanism of CO oxidation over Cu(110): Effect of CO gas energy

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of the temperature of gas phase CO upon the kinetics of the oxygen titration reaction: COg +Oa → CO2,g, has been studied. It is found that the reaction's rate is independant of CO gas temperature between 300 and 623 K. The activation energy (6.5 kcal/mole), dependence upon CO pressure (first-order), and independence upon oxygen coverage for 0.1 ≤ θo ≤ 0.4 are all independant of the CO gas phase temperature. This result rules out any Eley-Rideal type mechanism whereby CO reacts directly from the gas phase with an oxygen adatom without first being accommodated to the surface temperature in an absorbed state. The result is instead interpretable in terms of a Langmuir-Hinshelwood mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Newsome, Catal. Rev.-Sci. Eng. 21 (1980) 275.

    Google Scholar 

  2. J. Nakamura, J.M. Campbell and C.T. Campbell, J. Chem. Soc., Faraday Trans. 86 (15) (1990) 2725.

    Google Scholar 

  3. F.H.P.M. Habraken and G.A. Bootsma, Surface Sci. 87 (1979) 333.

    Google Scholar 

  4. F.H.P.M. Habraken and G.A. Bootsma, P. Hoffmann, S. Hachicha and A.M. Bradshaw, Surface Sci. 88 (1979) 285.

    Google Scholar 

  5. O.P. van Pruissen, M.M.M. Dings and O.L.J. Gijzeman, Surface Sci. 179 (1987) 377.

    Google Scholar 

  6. O.P. van Pruissen, O.L.J. Gijzeman and J.W. Geus, Vacuum 38 (4/5) (1988) 247.

    Google Scholar 

  7. K. Horn, M. Hussain and J. Pritchard, Surface Sci. 63 (1977) 244;

    Google Scholar 

  8. J.A. Rodriguez, J. Phys. Chem. 93 (1989) 5258.

    Google Scholar 

  9. C. Harendt, J. Goschnick and W. Hirshwald, Surface Sci. 152 (1985) 453.

    Google Scholar 

  10. T.W. Engel, J. Chem Phys. 69 (1978) 373.

    Google Scholar 

  11. T. Engel and G. Ertl, J. Chem. Phys. 69 (1978) 1267.

    Google Scholar 

  12. C.T. Campbell, G. Ertl, H. Kuipers and J. Segner, J. Chem. Phys. 73 (1980) 5862.

    Google Scholar 

  13. W.D. Clendening and C.T. Campbell, J. Chem Phys. 90 (1989) 6656.

    Google Scholar 

  14. W.D. Clendening, J.A. Rodriguez, J.M. Campbell and C.T. Campbell, Surface Sci. 216 (1989) 429.

    Google Scholar 

  15. J.M. Campbell, M.E. Domagala and C.T. Campbell, J. Vac. Sci. Technol. (in press).

  16. J.M. Campbell and C.T. Campbell (in preparation).

  17. This can be calculated using the formula for the equilibrium θCO (eq 1) given in ref. [2]

    Google Scholar 

  18. W.H. Weinberg and R.P. Merrill, J. Vac. Sci. Technol. 8 (1981) 718.

    Google Scholar 

  19. C.T. Rettner, C.B. Mullins, D.S. Bethune, D.J. Auerbach, E.K. Schweizer, W.H. Weinberg, J. Vac. Sci. Technol. A8 (1990) 2699.

    Google Scholar 

  20. C.T. Campbell, G. Ertl, H. Kuipers and J. Segner, Surface Sci. 107 (1981) 207.

    Google Scholar 

  21. J. Segner, C.T. Campbell, G. Doyen and G. Ertl, Surface Sci. 138 (1984) 505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Camille and Henry Dreyfus Foundation Teacher-Scholar Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domagala, M.E., Campbell, C.T. The mechanism of CO oxidation over Cu(110): Effect of CO gas energy. Catal Lett 9, 65–70 (1991). https://doi.org/10.1007/BF00769083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769083

Keywords

Navigation