Catalysis Letters

, Volume 9, Issue 1–2, pp 1–7 | Cite as

The effect of sulfate on the crystal structure of zirconia

  • Ram Srinivasan
  • Darrell Taulbee
  • Burtron H. Davis
Article

Abstract

Zirconia can be prepared to produce either tetragonal phase or predominantly monoclinic phase upon calcination at 500 °C. The precursors for each phase of zirconias was treated with 1N H2SO4 to produce a sulfated material. The results reveal that sulfation causes the tetragonal phase to be formed for both types of zirconia contrary to the data before sulfation, and sulfation increases the crystallization exotherm by 150 °C.

Keywords

Zirconia catalyst sulfated zirconia crystal chemistry calcination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Tanabe, Materials Chemistry and Physics 13 (1985) 347–364.Google Scholar
  2. [2]
    T. Maehashi, K. Mayura, K. Domen, K. Aika and T. Onishi, Chem. Lett. (1984) 747.Google Scholar
  3. [3]
    M.-Y. He and J.G. Ekerdt, J. Catal. 90 (1984) 17.Google Scholar
  4. [4]
    T. Yamaguchi, Y. Nakano, T. Iizuka and K. Tanabe, Chem. Lett. (1976) 177.Google Scholar
  5. [5]
    Y. Nakano, T. Yamaguchi and K. Tanabe, J. Catal. 80 (1983) 307.Google Scholar
  6. [6]
    R. Bird, C. Kemball and H.F. Leach, J. Chem. Soc. Faraday Trans. I, 83 (1987) 3069.Google Scholar
  7. [7]
    T. Yamaguchi and J.W. Hightower, J. Am. Chem. Soc. 99 (1977) 4201.Google Scholar
  8. [8]
    Y. Nakano, T. Iizuka, H. Hattori and K. Tanabe, J. Catal. 57 (1979) 1.Google Scholar
  9. [9]
    T. Yamaguchi, H. Sasaki and K. Tanabe, Chem. Lett. (1973) 1017.Google Scholar
  10. [10]
    B.H. Davis and P. Ganesan, Ind. Eng. Chem. Prod. Res. Dev. 18 (1979) 191.Google Scholar
  11. [11]
    K. Mayura, T. Maehashi, T. Haraoka, S. Narui, K. Domen and T. Onishi, J. Chem. Soc., Chem. Comm. (1985) 1495.Google Scholar
  12. [12]
    M. Hini and K. Arata, J. Chem. Soc., Chem. Comm. (1980) 851.Google Scholar
  13. [13]
    K. Arata, M. Hino and N. Yamagata, Bull. Chem. Soc. Japan 63 (1990) 244.Google Scholar
  14. [14]
    M.Y. Wen, I. Wender and J.W. Tierney, Energy and Fuels 4 (1990) 373.Google Scholar
  15. [15]
    M. Nitta, H. Sakoh and K. Aomura, Appl. Catal. 10 (1984) 215.Google Scholar
  16. [16]
    T. Yamaguchi and K. Tanabe, Materials Chemistry and Physics 16 (1986) 67–77.Google Scholar
  17. [17]
    R. Srinivasan, M.B. Harris, S.F. Simpson, R.J. De Angelis and B.H. Davis, J. Mater. Res. 3 (1988) 787.Google Scholar
  18. [18]
    R. Srinivasan and B.H. Davis, unpublished data.Google Scholar
  19. [19]
    R. Srinivasan, L. Rice and B.H. Davis, J. Mater. Sci., submitted.Google Scholar
  20. [20]
    R. Srinivasan, L. Rice and B.H. Davis, J. Am. Ceram. Soc. 73 (1990) 3528.Google Scholar
  21. [21]
    M.S. Scurrell, Appl. Catal. 34 (1987) 109–117.Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1991

Authors and Affiliations

  • Ram Srinivasan
    • 1
  • Darrell Taulbee
    • 1
  • Burtron H. Davis
    • 1
  1. 1.Center for Applied Energy ResearchUniversity of KentuckyLexingtonUSA

Personalised recommendations