Skip to main content
Log in

Ion channels from chemosensory olfactory neurons

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The olfactory epithelium has the ability to respond to a large number of volatile compounds of small molecular weight. Ultimately, such a property lies on a specialized type of neuron, the olfactory receptor cell. In the presence of odorants, the olfactory receptor neuron responds with action potentials whose frequency depends on odorant concentration. The primary events in the process of olfactory transduction are thought to occur at the cilia of olfactory receptor neurons and involve the binding of odorants to receptor molecules followed by the opening of ion channels. A crucial step in understanding olfactory transduction requires identifying the mechanisms that regulate the electrical activity of olfactory cells. In the last couple of years, patch-clamp recording from isolated olfactory cells and reconstitution of olfactory membranes in planar lipid bilayers have begun to shed light on some of these mechanisms. Although the information emerging from such studies is still preliminary, there are already well-defined hypotheses on the molecular events that might underlie the primary events in olfactory transduction. Currently, attention is being focused on the notions that second messengers might be involved in the activation of ion channels in olfactory cilia, and that odorant binding to a receptor molecule might lead directly to the gating of ion channels in chemosensory olfactory membranes. The coming years promise to be exciting ones in the field of olfactory transduction. We have now the necessary tools to be able to confront hypotheses and experimental facts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anholt, R. R. H. (1987).Trends Biochem. 12, 58–62.

    Google Scholar 

  • Anholt, R. R. H., Aebi, U., and Snyder, S. H. (1986).J. Neurosci. 6, 1962–1969.

    Google Scholar 

  • Anholt, R. R. H., Mumby, S. M., Stoffers, D. A., Girard, P. R., Kuo, J. F., and Snyder, S. H. (1987).Biochemistry 26, 788–795.

    Google Scholar 

  • Baylin, F. (1979).J. Gen. Physiol. 74, 17–36.

    Google Scholar 

  • Baylin, F., and Moulton, D. G. (1979).J. Gen. Physiol. 74, 37–55.

    Google Scholar 

  • Coronado, R., and Labarca, P. (1984).Trends Neurosci. 7, 155–160.

    Google Scholar 

  • Fenwick, E. M., Marty, A., and Neher, E. (1982).J. Physiol. (Lond.)331, 577–597.

    Google Scholar 

  • Getchell, T. V. (1986).Physiol. Rev. 66, 772–817.

    Google Scholar 

  • Getchell, T. V., and Shepherd, G. M. (1978a).J. Physiol. (Lond.)282, 521–540.

    Google Scholar 

  • Getchell, T. V., and Shepherd, G. M. (1978b).J. Physiol. (Lond.)282, 541–560.

    Google Scholar 

  • Kashiwanayagi, M., Sai, K., and Kurihara, K. (1978).J. Gen. Physiol. 89, 443–457.

    Google Scholar 

  • Labarca, P., Simon, S. A., and Anholt, R. R. H. (1988).Proc. Natl. Acad. Sci. USA (in press).

  • Lancet, D. (1986).Annu. Rev. Neurosci. 9, 329–355.

    Google Scholar 

  • Land, L. J., and Shepherd, G. M. (1974).Brain Res. 70, 506–510.

    Google Scholar 

  • Masukawa, L. M., Hedlund, B., and Shepherd, G. M. (1985).J. Neurosci. 5, 128–135.

    Google Scholar 

  • Maue, R., and Dionne, V. E. (1987).J. Gen. Physiol. 90, 95–125.

    Google Scholar 

  • Menco, B. P. M. (1980).Cell Tissue Res. 211, 5–29.

    Google Scholar 

  • Miller, C. (1986). InIonic Channels in Cells and Model Systems (Latorre, R., ed.), Plenum Press, New York.

    Google Scholar 

  • Mueller, P., and Rudin, D. O. (1969). InLaboratory Techniques of Membrane Biophysics (Passow, M., and Stampfli, R., eds.), Springer-Verlag, Berlin.

    Google Scholar 

  • Nakamura, T., and Gold, C. (1987).Nature 325, 442–444.

    Google Scholar 

  • Nakamura, T., and Gold, C. (1988).10th Annual Meeting, Association of Chemoreceptor Sciences [abstr.].

  • O'Connell, R. J., and Mozell, M. M. (1968).J. Neurophysiol. 32, 51–63.

    Google Scholar 

  • Okano, M., and Takagi, S. F. (1974).J. Physiol. (Lond.)242, 353–370.

    Google Scholar 

  • Ottoson, D. (1956).Acta Physiol. Scand. 35, Suppl. 122, 1–83.

    Google Scholar 

  • Pace, U., Hanski, E., Salomon, Y., and Lancet, D. (1985).Nature 316, 255–258.

    Google Scholar 

  • Sharp, F. R., Kauer, J. S., and Shepherd, G. M. (1975).Brain Res. 98, 596–600.

    Google Scholar 

  • Shepherd, G. M. (1972).Physiol. Rev. 52, 864–917.

    Google Scholar 

  • Shepherd, G. M. (1983).Neurobiology. Oxford University Press, New York.

    Google Scholar 

  • Sicard, G., and Holley, A. (1984).Brain Res. 292, 283–296.

    Google Scholar 

  • Sklar, P. B., Anholt, R. R. H., and Snyder, S. (1986).J. Biol. Chem. 261, 15538–15543.

    Google Scholar 

  • Stewart, W. B. J., Kauer, J. S., and Shepherd, G. M. (1979).J. Comp. Neurol. 185, 715–734.

    Google Scholar 

  • Suzuki, N. (1982). InChemoreception in Fishes (Hara, T. J. ed.), New York, Elsevier, pp. 93–108.

    Google Scholar 

  • Trotier, D. (1986).Pflugers Arch. 407, 589–595.

    Google Scholar 

  • Trotier, D., and MacLeod, P. (1983).Brain Res. 268, 225–237.

    Google Scholar 

  • Vodyanoy, V., and Murphy, R. B. (1983).Science 220, 717–719.

    Google Scholar 

  • Vodyanoy, V., and Vodyanoy, I. (1987).Neurosci. Lett. 73, 253–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labarca, P., Bacigalupo, J. Ion channels from chemosensory olfactory neurons. J Bioenerg Biomembr 20, 551–569 (1988). https://doi.org/10.1007/BF00768919

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00768919

Key Words

Navigation