Skip to main content
Log in

MgtA and MgtB: Prokaryotic P-type ATPases that mediate Mg2+ influx

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The gram-negative bacteriumSalmonella typhimurium possesses three distinct Mg2+ transport systems, encoded by thecorA, mgtA, andmgtB loci. The CorA transport system is the constitutive Mg2+ influx system. It can also mediate Mg2+ efflux at very high extracellular Mg2+ concentrations. In contrast, the MgtA and MgtB Mg2+ transport systems are normally expressed only at low extracellular Mg2+ concentrations. A strain ofS. typhimurium was constructed by mutagenesis which lacks Mg2+ transport and requires 100mM Mg2+ for growth. Using this strain, both the MgtA and MgtB transport systems were cloned by complementation of the strains inability to grow without Mg2+ supplementation. After sequencing and further genetic analysis, the MgtB system appears to be an operon composed of themgtC andmgtB genes (5′ to 3′). The downstreammgtB gene encodes the 102 kDa MgtB protein which by sequence analysis is clearly a P-type ATPase. Interestingly, while MgtB has relatively poor homology to other known prokaryotic P-type ATPases, it is highly homologous to mammalian reticular Ca2+-ATPases. MgtC is a 22.5 kDa hydrophobic membrane protein that lacks homology to any known protein. Transposon insertions in this gene abolish uptake by the MgtB transport system. We hypothesize that MgtC is a subunit of the MgtB ATPase involved either in proper insertion of MgtB into the membrane or possibly in binding of extracellular Mg2+ for delivery to the ATPase subunit. The sequence of the MgtA gene has recently been completed, and it too is a P-type ATPase more similar to eukaryotic than prokaryotic P-type ATPases. Expression of both MgtA and MgtB are highly regulated by the concentration of extracellular Mg2+. Transcription ofmgtB can be increased about 1000 fold by lowering Mg2+ from 1 mM to 1 µM. Likewise, whenmgtB is expressed from a multicopy plasmid, a similar decrease in extracellular Mg2+ greatly increases transport. Under growth conditions of limiting Mg2+, MgtB becomes the dominant Mg2+ influx system inS. typhimurium. Even so, since MgtB (and MgtA) mediate only influx of Mg2+, it is unclear why the cell requires energy from ATP to mediate Mg2+ entry into the cell down a large electrochemical gradient. Further studies of the structure-function and energetics of these novel Mg2+ influx P-type ATPases should yield insights into the function of P-type ATPases in general as well as information about the regulation of cellular Mg2+ fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grubbs, R. D., and M. E. Maguire (1987). “Magnesium as a regulatory cation: Criteria and evaluation,”Magnesium 6, 113–127.

    Google Scholar 

  2. Maguire, M. E. (1990). “Magnesium, a regulated and regulatory cation,”Metal Ions Biol. 26, 135–153.

    Google Scholar 

  3. Flatman, P. W. (1991). “Mechanisms of magnesium transport,”Annu. Rev. Physiol. 53, 259–271.

    Google Scholar 

  4. Murphy, E., C. C. Freudenrich, and M. Lieberman (1991). “Cellular magnesium and Na/Mg exchange in heart cells,”Annu. Rev. Physiol. 53, 273–287.

    Google Scholar 

  5. Matsuda, H. (1991). “Magnesium gating of the inwardly rectifying K+ channel,”Annu. Rev. Physiol. 53, 289–298.

    Google Scholar 

  6. Agus, Z. S., and M. Morad (1991). “Modulation of cardiac ion channels by magnesium,”Annu. Rev. Physiol. 53, 299–307.

    Google Scholar 

  7. Hmiel, S. P., M. D. Snavely, J. B. Florer, M. E. Maguire, and C. G. Miller (1989). “Magnesium transport inSalmonella typhimurium: Genetic characterization and cloning of three magnesium transport loci,”J. Bacteriol. 171, 4742–4751.

    Google Scholar 

  8. Snavely, M. D., J. B. Florer, C. G. Miller, and M. E. Maguire (1989). “Magnesium transport inSalmonella typhimurium:28Mg2+ transport by the CorA, MgtA, and MgtB system,”J. Bacteriol. 171, 4761–4766.

    Google Scholar 

  9. Hmiel, S. P., M. D. Snavely, C. G. Miller, and M. E. Maguire (1986). “Magnesium transport inSalmonella typhimurium: Characterization of magnesium influx and cloning of a transport gene,”J. Bacteriol. 168, 1444–1450.

    Google Scholar 

  10. Snavely, M. D., S. A. Gravina, T. T. Cheung, C. G. Miller, and M. E. Maguire (1991). “Magnesium transport inSalmonella typhimurium: Regulation ofmgtA andmgtB expression,”J. Biol. Chem. 266, 824–829.

    Google Scholar 

  11. Snavely, M. D., C. G. Miller, and M. E. Maguire (1991). “ThemgtB Mg2+ transport locus ofSalmonella typhimurium encodes a P-type ATPase,”J. Biol. Chem. 266, 815–823.

    Google Scholar 

  12. Gibson, M. M., D. A. Bagga, C. G. Miller, and M. E. Maguire (1991). “Magnesium transport inSalmonella typhimurium: The influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system,”Mol. Microbiol. 5, 2753–2762.

    Google Scholar 

  13. Snavely, M. D., J. B. Florer, C. G. Miller, and M. E. Maguire (1989). “Magnesium transport inSalmonella typhimurium: Expression of cloned genes for three distinct Mg2+ transport systems,”J. Bacteriol. 171, 4752–4760.

    Google Scholar 

  14. Bryson, M. F., and H. L. Drake (1988). “Energy-dependent transport of nickel byClostridium pasteurianum,”J. Bacteriol. 170, 234–238.

    Google Scholar 

  15. Silver, S., and J. E. Lusk (1987). “Bacterial magnesium, manganese, and zinc transport,” inIon Transport in Prokaryotes (B. P. Rosen and S. Silver, eds.), Academic Press, San Diego, California, pp. 165–180.

    Google Scholar 

  16. Lundie, L. L., Jr., H. Yang, J. K. Heinonen, S. I. Dean, and H. L. Drake (1988). “Energy-dependent, high-affinity transport of nickel by the acetogenClostridium thermoaceticum,”J. Bacteriol. 170, 5705–5708.

    Google Scholar 

  17. Jarrell, K. F., and G. D. Sprott (1982). “Nickel Transport inMethanobacterium bryantii,”J. Bacteriol. 151, 1195–1203.

    Google Scholar 

  18. Fu, C., and R. J. Maier (1991). “Identification of a locus within the hydrogenase gene cluster involved in intracellular nickel metabolism inBradyrhizobium japonicum,”Appl. Environ. Microbiol. 57, 3502–3510.

    Google Scholar 

  19. Pedersen, P. L., and E. Carafoli (1987). “Ion-motive ATPases. I. Ubiquity, properties, and significance to cell function,”Trends Biochem. Sci. 12, 146–150.

    Google Scholar 

  20. Nucifora, G., L. Chu, T. K. Misra, and S. Silver (1989). “Cadmium resistance fromStaphylococcus aureus plasmid p1258cadA gene results from a cadmium-efflux ATPase,”Proc. Natl. Acad. Sci. USA 86, 3544–3548.

    Google Scholar 

  21. Hesse, J. E., L. Wiecozorek, K. Altendorf, A. S. Reicin, E. Dorus, and W. Epstein (1984). “Sequence homology between two membrane transport ATPases, the Kdp-ATPase ofEscherichia coli and the Ca2+-ATPase of sarcoplasmic reticulum,”Proc. Natl. Acad. Sci. USA 81, 4746–4750.

    Google Scholar 

  22. Solioz, M., S. Mathews, and P. Forst (1987). “Cloning of the K+-ATPase ofStreptococcus faecalis. Structural and evolutionary implications of its homology to the KdpB protein ofEscherichia coli,”J. Biol. Chem. 262, 7358–7362.

    Google Scholar 

  23. Epstein, W. (1990). “Bacterial transport ATPases,” inThe Bacteria, Vol XII:Bacterial Energetics, (T. A. Krulwich ed.), Academic Press, New York, pp. 87–110.

    Google Scholar 

  24. Dosch, D. C., G. L. Helmer, S. H. Sutton, F. F. Salvacion, and W. Epstein (1991). “Genetic analysis of potassium transport loci inEscherichia coli: Evidence for three constitutive systems mediating uptake of potassium,”J. Bacteriol. 173, 687–696.

    Google Scholar 

  25. Burk, S. E., J. Lytton, D. H. MacLennan, and G. E. Shull (1989). “cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump,”J. Biol. Chem. 264, 18561–18568.

    Google Scholar 

  26. Brandl, C. J., S. de Leon, D. R. Martin, and D. H. MacLennan (1987). “Adult forms of the Ca2+ ATPase of sarcoplasmic reticulum: Expression in developing skeletal muscle,”J. Biol. Chem. 262, 3768–3774.

    Google Scholar 

  27. Brandl, C. J., N. M. Green, B. Korczak, and D. H. MacLennan (1986). “Two Ca2+ ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences,”Cell 44, 597–607.

    Google Scholar 

  28. Serrano R., C. Kielland-Brandt, and G. R. Fink (1986). “Yeast plasma membrane ATPase is essential for growth and has homology with (Na+, K+), K+-, and Ca2+-ATPases,”Nature (London)319, 689–693.

    Google Scholar 

  29. Schlesser, A., S. Ulaszewaski, M. Ghislain, and A. Goffeau (1988). “A second transport ATPase gene inSaccharomyces cerevisiae,”J. Biol. Chem. 263, 19480–19487.

    Google Scholar 

  30. Lane, L. K., M. M. Shull, K. R. Whitmer, and J. B. Lingrel (1989). “Characterization of two genes for the human Na,K-ATPase β subunit,”Genomics 5, 445–453.

    Google Scholar 

  31. Salon, J., N. Cortas, and I. S. Edelman (1989). “Isoforms of Na,K-ATPase inArtemia saline: I. Detection by FITC binding and time course,”J. Membr. Biol. 108, 177–186.

    Google Scholar 

  32. Shull, G. E., and J. B. Lingrel (1986). “Molecular cloning of the rat stomach (H+, K+)-ATPase,J. Biol. Chem. 261, 16788–16791.

    Google Scholar 

  33. Verma, A. K., A. G. Filoteo, D. R. Stanford, E. D. Wieben, J. T. Penniston, E. E. Strehler-Page, P. James, T. Vorherr, J. Krebs, and E. Carafoli (1988). “Complete primary structure of a human plasma membrane Ca2+ pump,”J. Biol. Chem. 263, 14152–14159.

    Google Scholar 

  34. Shull, G. E., and J. Greeb (1988). “Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarly to Na+, K+- and other cation transport ATPases,”J. Biol. Chem. 263, 8646–8657.

    Google Scholar 

  35. Feng, D., and R. F. Doolittle (1987). “Progressive multiple sequence alignment,”J. Mol. Evol. 25, 351–360.

    Google Scholar 

  36. Serrano, R. (1988). “Structure and function of proton-translocating ATPase in plasma membranes of plants and fungi.”Biochim. Biophys. Acta 947, 1–28.

    Google Scholar 

  37. Clarke, D. M., T. W. Loo, G. Inesi, and D. H. MacLennan (1989). “Location of high-affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase,”Nature (London)339, 476–478.

    Google Scholar 

  38. Geering, K., I. Theulaz, F. Verrey, M. T. Häuptle, and B. C. Rossier (1989). “A role for the β-subunit in the expression of functional Na+-K+-ATPase inXenopus oocytes,”Am. J. Physiol. 257, C851-C858.

    Google Scholar 

  39. McDonough, A. A., K. Geering, and R. A. Farley (1990). “The sodium pump needs itsbeta subunit,”FASEB J. 4, 1598–1605.

    Google Scholar 

  40. Noguchi, S., K. Higashi, and M. Kawamura (1990). “A possible role of the β-subunit of (Na,K)-ATPase in facilitating correct assembly of the α-subunit into the membrane,”J. Biol. Chem. 265, 15991–15995.

    Google Scholar 

  41. Geering, K. (1991). “The functional role of the β-subunit in the maturation and intracellular transport of Na,K-ATPase,”FEBS Lett. 285, 189–193.

    Google Scholar 

  42. Zhang, Y. B., and J. K. Broome-Smith (1990). “Correct insertion of a simple eukaryotic plasma-membrane protein into the cytoplasmic membrane ofEscherichia coli,”Gene 96, 51–57.

    Google Scholar 

  43. Pascolini, D., and J. K. Blasie (1988). “Moderate resolution profile structure of the sarcoplasmic reticulum membrane under ‘low’ temperature conditions for the transient trapping of E1 ∼ P,”Biophys. J. 54, 669–678.

    Google Scholar 

  44. Stokes, D. L., and N. M. Green (1990). “Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing,”Biophys. J. 57, 1–14.

    Google Scholar 

  45. Stokes, D. L., and N. M. Green (1990). “Structure of CaATPase: Electron microscopy of frozen-hydrated crystals at 6Å resolution in projection,”J. Mol. Biol. 213, 529–538.

    Google Scholar 

  46. Asturias, F. J., and J. K. Blasie (1991). “Location of high-affinity metal binding sites in the profile structure of the Ca2+-ATPase in the sarcoplasmic reticulum by resonance x-ray diffraction,”Biophys. J. 59, 488–502.

    Google Scholar 

  47. MacLennan, D. H., C. J. Brandl, B. Korcak, and N. M. Green (1985). “Amino acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence,”Nature (London)316, 696–700.

    Google Scholar 

  48. Greeb, J., and G. E. Shull (1989). “Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle,”J. Biol. Chem. 264, 18569–18576.

    Google Scholar 

  49. Magyar, A., and A. Váradi (1990). “Molecular cloning and chromosomal localization of a sarco/endoplasmic reticulum-type Ca2+-ATPase ofDrosophila melanogaster,”Biochem. Biophys. Res. Commun. 173, 872–877.

    Google Scholar 

  50. Palmero, I., and L. Sastre (1989). “Complementary DNA cloning of a protein highly homologous to mammalian sarcoplasmic reticulum Ca-ATPase from the crustaceanArtemia,”J. Mol. Biol. 210, 737–748.

    Google Scholar 

  51. Rudolph, H. K., A. Antebi, G. R. Fink, C. M. Buckley, T. E. Dorman, J. LeVitre, L. S. Davidow, J. Mao, and D. T. Moir (1989). “The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family,”Cell 58, 133–145.

    Google Scholar 

  52. Monk, B. C., M. B. Kurtz, J. A. Marrinan, and D. S. Perlin (1991). “Cloning and characterization of the plasma membrane H+-ATPase fromCandida albicans,”J. Bacteriol. 173, 6826–6836.

    Google Scholar 

  53. Ghislain, M., A. Schlesser, and A. Goffeau (1987). “Mutation of a conserved glycine residue modifies the vandate sensitivity of the plasma membrane H+-ATPase fromSchizosaccharomyces pombe,”J. Biol. Chem. 262, 17549–17555.

    Google Scholar 

  54. Addison, R. (1986). “Primary structure of theNeuropora plasma membrane H+-ATPase deduced from the gene sequence,”J. Biol. Chem. 261, 14896–14901.

    Google Scholar 

  55. Hager, K. M., S. M. Mandala, J. W. Davenport, D. W. Speicher, E. J. Benz, Jr., and C. W. Slayman (1986). “Amino acid sequence of the plasma membrane ATPase ofNeurospora crassa: deduction from the genomic andcDNA sequences,”Proc. Natl. Acad. Sci. USA 83, 7693–7697.

    Google Scholar 

  56. Meade, J. C., K. M. Hudson, S. L. Stringer, and J. R. Stringer (1989). “A tandem pair ofLeishmania donovani cation-transporting ATPase genes encode isoforms that are differentially expressed,”Mol. Biochem. Parasitol. 33, 81–92.

    Google Scholar 

  57. Meade, J. C., J. Shaw, S. Lemaster, G. Gallagher, and J. R. Stringer (1987). “Structure and expression of a tandem gene pair inLeishmania donovani that encodes a protein structurally homologous to eucaryotic cation-transporting ATPases,”Mol. Cell. Biol. 7, 3937–3946.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maguire, M.E. MgtA and MgtB: Prokaryotic P-type ATPases that mediate Mg2+ influx. J Bioenerg Biomembr 24, 319–328 (1992). https://doi.org/10.1007/BF00768852

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00768852

Key words

Navigation