The Na,K-ATPase

Abstract

The energy dependent exchange of cytoplasmic Na+ for extracellular K+ in mammalian cells is due to a membrane bound enzyme system, the Na,K-ATPase. The exchange sustains a gradient for Na+ into and for K+ out of the cell, and this is used as an energy source for creation of the membrane potential, for its de- and repolarisation, for regulation of cytoplasmic ionic composition and for transepithelial transport. The Na,K-ATPase consists of two membrane spanning polypeptides, an α-subunit of 112-kD and a β-subunit, which is a glycoprotein of 35-kD. The catalytic properties are associated with the α-subunit, which has the binding domain for ATP and the cations. In the review, attention will be given to the biochemical characterization of the reaction mechanism underlying the coupling between hydrolysis of the substate ATP and transport of Na+ and K+.

This is a preview of subscription content, access via your institution.

References

  1. Albers, R. W. (1967).Annu. Rev. Biochem. 36, 727–756.

    Google Scholar 

  2. Andersen, J. P., Vilsen, B., Nielsen, H., and Møller, J. V. (1986).Biochemistry 25, 6439–6447.

    Google Scholar 

  3. Antolovic, R., Brüller, H.-J., Bunk, S., Linder, D., and Schoner, W. (1991).Eur. J. Biochem. 199, 195–202.

    Google Scholar 

  4. Araki, K., Kuroki, J., Ito, O., Kuwada, M., and Tachibana, S. (1989).Biochem. Biophys. Res. Commun. 164, 496–502.

    Google Scholar 

  5. Araki, K., Kuwada, M., Ito, O., Kuroki, J., and Tachibana, S. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 2), pp. 221–223.

    Google Scholar 

  6. Baker, P. F., Blaustein, M. P., Hodgkin, A. L., and Steinhardt, R. A. (1969).J. Physiol. London 200, 431–458.

    Google Scholar 

  7. Bayer, R. (1990).Biochemistry 29, 2251–2256.

    Google Scholar 

  8. Borlinghaus, R. F., Apell, H.-J., and Läuger, P. (1987).J. Memb. Biol. 97, 161–178.

    Google Scholar 

  9. Brotherus, J. R., Møller, J. V., and Jørgensen, P. L. (1981).Biochem. Biophys. Res. Commun. 100, 146–154.

    Google Scholar 

  10. Canfield, V. A., Okamato, C. T., Chow, D., Dorfman, J., Gros, P., Forte, J. G., and Levenson, R. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 89–98.

    Google Scholar 

  11. Cantley, L. C., Cantley, L. G., and Josephson, L. (1978).J. Biol. Chem. 253, 7361–7368.

    Google Scholar 

  12. Clarke, R. J., Apell, H.-J., and Läuger, P. (1989).Biochim. Biophys. Acta 981, 326–336.

    Google Scholar 

  13. Clausen, T. (1986).Physiol. Rev. 66, 542–580.

    Google Scholar 

  14. Cornelius, F., and Skou, J. C. (1988).Biochim. Biophys. Acta 944, 223–232.

    Google Scholar 

  15. Craig, W. S. (1982).Biochemistry 21, 5707–5717.

    Google Scholar 

  16. Danielli, J. F., and Davson, H. (1935).J. Cell. Comp. Physiol. 5, 495–508.

    Google Scholar 

  17. Dean, R. B. (1941).Biol. Symp. 3, 331–348.

    Google Scholar 

  18. De Weer, P. (1985). InThe Kidney: Physiology and Pharmacology (Seldin, D. W., and Giebisch, G., eds.), Raven Press, New York pp. 31–48.

    Google Scholar 

  19. De Weer, P., Gadsby, D. C., and Rakowski, R. F. (1988).Annu. Rev. Physiol. 50, 225–241.

    Google Scholar 

  20. Eisenrauch, A., Grell, E., and Bamberg, E. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 317–326.

    Google Scholar 

  21. Esmann, M. (1984).Biochim. Biophys. Acta 787, 81–89.

    Google Scholar 

  22. Esmann, M., and Skou, J. C. (1985).Biochem. Biophys. Res. Commun. 127, 857–863.

    Google Scholar 

  23. Esmann, M., Christiansen, C., Karlson, K., Hansson, G. C., and Skou, J. C. (1980).Biochim. Biophys. Acta 603, 1–12.

    Google Scholar 

  24. Esmann, M., Horváth, L. I., and Marsh, D. (1987).Biochemistry 26, 8675–8683.

    Google Scholar 

  25. Gadsby, D. C., Nakao, M., and Bahinski, A. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 355–371.

    Google Scholar 

  26. Gardos, G. (1954).Acta Physiol. Acad. Sci. Hung. 6, 191–199.

    Google Scholar 

  27. Glynn, I. M. (1956).J. Physiol. London 134, 278–310.

    Google Scholar 

  28. Glynn, I. M. (1985). InThe Enzymes of Biological Membranes (Martonosi, A. N., ed.) Plenum Press, New York, Vol. 3, pp. 28–114.

    Google Scholar 

  29. Glynn, I. M. (1988). InThe Na +,K + Pump. Part A: Molecular Aspects (Skou, J. C., Nørby, J. G., Maunsbach, A. B., and Esmann, M., eds.), Alan R. Liss, New York, pp. 435–460.

    Google Scholar 

  30. Glynn, I. M., and Richards, D. E. (1982).J. Physiol. London 330, 17–43.

    Google Scholar 

  31. Glynn, I. M., Hara, Y., and Richards, D. E., (1984).J. Physiol. London 351, 531–547.

    Google Scholar 

  32. Goldin, S. M. (1977).J. Biol. Chem. 252, 5630–5642.

    Google Scholar 

  33. Goldshleger, R., Karlish, S. J. D., Rephaeli, A., and Stein, W. D. (1987).J. Physiol. London 387, 331–355.

    Google Scholar 

  34. Harris, E. J., and Maizels, M. (1951).J. Physiol. London 113, 506–524.

    Google Scholar 

  35. Haupert, G. T. (1988). InThe Na +,K + Pump. Part B: Cellular Aspects (Skou, J. C., Nørby, J. G., Maunsbach, A. B., and Esmann, M., eds.), Alan R. Liss, New York, pp. 297–320.

    Google Scholar 

  36. Hayashi, Y., Mimura, K., Matsui, H., and Tagaki, T. (1989).Biochim. Biophys. Acta 983, 217–229.

    Google Scholar 

  37. Hayashi, Y., Mimura, K., Matsui, H., and Tagaki, T. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 2), pp. 281–284.

    Google Scholar 

  38. Hegyvary, C., and Post, R. L. (1971).J. Biol. Chem. 246, 5234–5240.

    Google Scholar 

  39. Heppel, L. A. (1939).Am. J. Physiol. 127, 385–391.

    Google Scholar 

  40. Heppel, L. A., and Schmidt, C. L. A. (1938).Univ. Calif. Publ. Physiol. 8, 189–196.

    Google Scholar 

  41. Hevesy, G. (1938).Enzymologia 5, 138–157.

    Google Scholar 

  42. Hodgkin, A. L., and Keynes, R. D. (1955).J. Physiol. London 128, 28–60.

    Google Scholar 

  43. Hoffman, J. F. (1962).Circulation 26, 1201–1213.

    Google Scholar 

  44. Hokin, L. E. Dahl, J. L., Deupree, J. C., Dixon, J. F., Hackney, J. F., and Perdue, J. F. (1973).J. Biol. Chem. 248, 2593–2605.

    Google Scholar 

  45. Jørgensen, P. L. (1974).Biochim. Biophys. Acta 356, 36–52.

    Google Scholar 

  46. Jørgensen, P. L. (1975a).Q. Rev. Biophys. 7, 239–274.

    Google Scholar 

  47. Jørgensen, P. L. (1975b).Biochim. Biophys. Acta 401, 399–415.

    Google Scholar 

  48. Jørgensen, P. L., and Andersen, J. P. (1988).J. Memb. Biol. 103, 95–120.

    Google Scholar 

  49. Jørgensen, P. L., and Skou, J. C. (1968).Biochem. Biophys. Res. Commun. 37, 39–46.

    Google Scholar 

  50. Kapakos, J. G., and Steinberg, M. (1982).Biochem. Biophys. Acta 693, 493–496.

    Google Scholar 

  51. Karlish, S. J. D. (1980).J. Bioenerg. Biomembr. 12, 111–136.

    Google Scholar 

  52. Karlish, S. J. D., and Kempner, E. S. (1984).Biochim. Biophys. Acta 776, 288–298.

    Google Scholar 

  53. Karlish, S. J. D., and Yates, D. W. (1978).Biochim. Biophys. Acta 527, 115–130.

    Google Scholar 

  54. Karlish, S. J. D., Yates, D. W., and Glynn, I. M. (1978).Biochim. Biophys. Acta 525, 252–264.

    Google Scholar 

  55. Karlish, S. J. D., Goldshleger, R., and Stein, W. D. (1990).Proc. Natl. Acad. Sci. USA 87, 4566–4570.

    Google Scholar 

  56. Kepner, G. R., and Macey, R. I. (1968).Biochim. Biophys. Acta 163, 188–203.

    Google Scholar 

  57. Kernan, R. P. (1962).Nature (London)193, 986–987.

    Google Scholar 

  58. Kyte, J. (1971).J. Biol. Chem. 246, 4157–4165.

    Google Scholar 

  59. Klodos, I., and Forbush, B., III. (1988).J. Gen. Physiol. 92, 46.

    Google Scholar 

  60. Lane, L. K., Copenhaver, J. H., Lindenmayer, G. E., and Schwartz, A. (1973).J. Biol. Chem. 248, 7197–7200.

    Google Scholar 

  61. Läuger, P. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 303–315.

    Google Scholar 

  62. Libet, B. (1948).Fed. Proc. 7, 72.

    Google Scholar 

  63. Lingrel, J. B., Orlowski, J., Price, E. M., and Pathak, B. G. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 1–16.

    Google Scholar 

  64. Lundegårdh, H. (1940).Ann. Agric. College Sweden 8, 233–404.

    Google Scholar 

  65. Mahaney, J. E., Girard, J. P., and Grisham, C. M. (1990).FEBS Lett. 260, 160–164.

    Google Scholar 

  66. Maizels, M. (1954).Symp. Soc. Exp. Biol. 8, 202–227.

    Google Scholar 

  67. Marsh, D. (1989). InBiological Magnetic Resonance, Spin Labeling Theory and Applications (Berliner, L. J., and Reuben, J., eds.), Plenum Press, New York, Vol. 8, pp. 255–303.

    Google Scholar 

  68. Maunsbach, A. G., Skriver, E., and Hebert, H. (1991), InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series. Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 159–172.

    Google Scholar 

  69. Modyanov, N., Lutsenko, S., Chertova, E., and Efremov, R. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 99–115.

    Google Scholar 

  70. Nørby, J. G., and Jensen, J. (1971).Biochim. Biophys. Acta 233, 104–116.

    Google Scholar 

  71. Nørby, J. G., and Jensen, J. (1989).J. Biol. Chem. 264, 19458–19558.

    Google Scholar 

  72. Nørby, J. G., and Klodos, I. (1988), InThe Na +,K + Pump. Part A: Molecular Aspects (Skou, J. C., Nørby, J. G., Maunsbach, A. B., and Esmann, M., eds.), Alan R. Liss, New York, pp. 249–270.

    Google Scholar 

  73. Nørby, J. G., Klodos, I., and Christiansen, N. O. (1983).J. Gen. Physiol. 82, 725–759.

    Google Scholar 

  74. Ottolenghi, P. (1979).Eur. J. Biochem. 99, 113–131.

    Google Scholar 

  75. Ottolenghi, P., and Ellory, J. C. (1983).J. Biol. Chem. 258, 14895–14907.

    Google Scholar 

  76. Pedemonte, C. H., and Kaplan, J. H. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 2), pp. 309–312.

    Google Scholar 

  77. Plesner, I. W., Plesner, L., Nørby, J. G., and Klodos, I. (1981).Biochim. Biophys. Acta 643, 483–494.

    Google Scholar 

  78. Post, R. L., and Jolly, P. (1957).Biochim. Biophys. Acta 25, 118–128.

    Google Scholar 

  79. Post, R. L., Kume, S., Tobin, T., Orcutt, B., and Sen, A. K. (1969).J. Gen. Physiol. 54, 306s-326s.

    Google Scholar 

  80. Post, R. L., Hegyvary, C., and Kume, S. (1972).J. Biol Chem. 247, 6530–6540.

    Google Scholar 

  81. Post, R. L. and Suzuki, K. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H. and De Weer, P., eds.) Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 201–210.

    Google Scholar 

  82. Price, E. M., and Lingrel, J. B. (1988).Biochemistry 27, 8400–8408.

    Google Scholar 

  83. Rakowski, R. F. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 339–353.

    Google Scholar 

  84. Repke, K. R. H. (1963). InNew Aspects of Cardiac Glycosides (Willbrandt, W., ed.), Pergamon, New York, Vol. 3, pp. 47–73.

    Google Scholar 

  85. Robertson, J. D. (1959).Biochem. Soc. Symp. 16, 3–43.

    Google Scholar 

  86. Roelofsen, B., and Van Deenen, L. L. M. (1973).Eur. J. Biochem. 40, 245–257.

    Google Scholar 

  87. Schatzmann, H. J. (1953).Helv. Physiol. Pharmacol. Acta 11, 346–354.

    Google Scholar 

  88. Schwarz, W., and Vasilets, L. A. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), 327–338.

    Google Scholar 

  89. Schwartz, A. (1983). InCurrent Topics in Membranes and Transport. Structure and Mechanism of the Na/K Pump (Hoffman, J. F., and Forbush, B., III, eds.), Academic Press, New York Vol. 19, pp. 825–855.

    Google Scholar 

  90. Sen, A. K., and Post, R. L. (1964).J. Biol. Chem. 239, 345–352.

    Google Scholar 

  91. Shaw, T. L. (1955).J. Physiol. London 129, 464–475.

    Google Scholar 

  92. Shull, G. E., Schwartz, A., and Lingrel, J. B. (1985).Nature (London)316, 691–695.

    Google Scholar 

  93. Shull, G. E., Lane, L. K., and Lingrel, J. B. (1986).Nature (London)321, 429–431.

    Google Scholar 

  94. Shull, G. E., Young, R. M., Greeb, J., and Lingrel, J. B. (1988). InThe Na +,K + Pump. Part A: Molecular Aspects (Skou, J. C., Nørby, J. G., Maunsbach, A. B., and Esmann, M., eds.), Alan R. Liss, New York, pp. 3–18.

    Google Scholar 

  95. Singer, S. J., and Nicolson, G. L. (1972).Science 175, 720–731.

    Google Scholar 

  96. Skou, J. C. (1957).Biochim. Biophys. Acta 23, 394–401.

    Google Scholar 

  97. Skou, J. C. (1965).Physiol. Rev. 45, 596–617.

    Google Scholar 

  98. Skou, J. C. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 2), pp. 317–319.

    Google Scholar 

  99. Skou, J. C., and Esmann, M. (1979).Biochim. Biophys. Acta 567, 436–444.

    Google Scholar 

  100. Skou, J. C., and Esmann, M. (1981).Biochim. Biophys. Acta 647, 232–240.

    Google Scholar 

  101. Skou, J. C., and Esmann, M. (1983).Biochim. Biophys. Acta 746, 101–113.

    Google Scholar 

  102. Skriver, E., Maunsbach, A. B., and Jørgensen, P. L. (1981).FEBS Lett. 131, 219–222.

    Google Scholar 

  103. Slayman, C. L. (1982).Curr. Top. Membr. Transp. 16, pp. xxxi-xxxvii.

    Google Scholar 

  104. Steinbach, H. B. (1940).J. Biol. Chem. 133, 695–701.

    Google Scholar 

  105. Stürmer, W., Bühler, R., Apell, H.-J., and Läuger, P. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 2), pp. 531–536.

    Google Scholar 

  106. Sweadner, K. J. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Vol. 46 (Part 1), pp. 63–76.

  107. Taniguchi, K., Suzuki, K., Sasaki, T., Tosa, H., and Shinoguchi, E. (1988). InThe Na +,K + Pump. Part A: Molecular Aspects (Skou, J. C., Nørby, J. G., Maunsbach, A. B., and Esmann, M., eds.), Alan R. Liss, New York, pp. 369–376.

    Google Scholar 

  108. Thomas, R. C. (1969).J. Physiol. London 201, 495–514.

    Google Scholar 

  109. Ussing, H. H. (1960). InHandbuch der Experimentellen Pharmakologie. The Alkali Metal Ions in Biology (Kruhøffer, P., Hess Thaysen, J., and Thorn, N. A., eds.), Springer Verlag, Berlin, pp. 1–195.

    Google Scholar 

  110. Ussing, H. H., and Zerahn, K. (1951).Acta Physiol. Scand. 23, 110–127.

    Google Scholar 

  111. Vilsen, B., Andersen, J. P., Petersen, J., and Jørgensen, P. L. (1987).J. Biol. Chem. 262, 10511–10517.

    Google Scholar 

  112. Yoda, A., and Yoda, S. (1987).J. Biol. Chem. 262, 110–115.

    Google Scholar 

  113. Zerahn, K. (1956).Acta Physiol. Scand. 36, 300–318.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skou, J.C., Esmann, M. The Na,K-ATPase. J Bioenerg Biomembr 24, 249–261 (1992). https://doi.org/10.1007/BF00768846

Download citation

Key words

  • Cation transport
  • Na,K-pump
  • Na,K-ATPase
  • ouabain
  • phosphorylation
  • occlusion
  • coupling between ATP hydrolysis and transport