Journal of Bioenergetics and Biomembranes

, Volume 24, Issue 3, pp 249–261 | Cite as

The Na,K-ATPase

  • Jens Christian Skou
  • Mikael Esmann
Article
  • 689 Downloads

Abstract

The energy dependent exchange of cytoplasmic Na+ for extracellular K+ in mammalian cells is due to a membrane bound enzyme system, the Na,K-ATPase. The exchange sustains a gradient for Na+ into and for K+ out of the cell, and this is used as an energy source for creation of the membrane potential, for its de- and repolarisation, for regulation of cytoplasmic ionic composition and for transepithelial transport. The Na,K-ATPase consists of two membrane spanning polypeptides, an α-subunit of 112-kD and a β-subunit, which is a glycoprotein of 35-kD. The catalytic properties are associated with the α-subunit, which has the binding domain for ATP and the cations. In the review, attention will be given to the biochemical characterization of the reaction mechanism underlying the coupling between hydrolysis of the substate ATP and transport of Na+ and K+.

Key words

Cation transport Na,K-pump Na,K-ATPase ouabain phosphorylation occlusion coupling between ATP hydrolysis and transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, R. W. (1967).Annu. Rev. Biochem. 36, 727–756.Google Scholar
  2. Andersen, J. P., Vilsen, B., Nielsen, H., and Møller, J. V. (1986).Biochemistry 25, 6439–6447.Google Scholar
  3. Antolovic, R., Brüller, H.-J., Bunk, S., Linder, D., and Schoner, W. (1991).Eur. J. Biochem. 199, 195–202.Google Scholar
  4. Araki, K., Kuroki, J., Ito, O., Kuwada, M., and Tachibana, S. (1989).Biochem. Biophys. Res. Commun. 164, 496–502.Google Scholar
  5. Araki, K., Kuwada, M., Ito, O., Kuroki, J., and Tachibana, S. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 2), pp. 221–223.Google Scholar
  6. Baker, P. F., Blaustein, M. P., Hodgkin, A. L., and Steinhardt, R. A. (1969).J. Physiol. London 200, 431–458.Google Scholar
  7. Bayer, R. (1990).Biochemistry 29, 2251–2256.Google Scholar
  8. Borlinghaus, R. F., Apell, H.-J., and Läuger, P. (1987).J. Memb. Biol. 97, 161–178.Google Scholar
  9. Brotherus, J. R., Møller, J. V., and Jørgensen, P. L. (1981).Biochem. Biophys. Res. Commun. 100, 146–154.Google Scholar
  10. Canfield, V. A., Okamato, C. T., Chow, D., Dorfman, J., Gros, P., Forte, J. G., and Levenson, R. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 89–98.Google Scholar
  11. Cantley, L. C., Cantley, L. G., and Josephson, L. (1978).J. Biol. Chem. 253, 7361–7368.Google Scholar
  12. Clarke, R. J., Apell, H.-J., and Läuger, P. (1989).Biochim. Biophys. Acta 981, 326–336.Google Scholar
  13. Clausen, T. (1986).Physiol. Rev. 66, 542–580.Google Scholar
  14. Cornelius, F., and Skou, J. C. (1988).Biochim. Biophys. Acta 944, 223–232.Google Scholar
  15. Craig, W. S. (1982).Biochemistry 21, 5707–5717.Google Scholar
  16. Danielli, J. F., and Davson, H. (1935).J. Cell. Comp. Physiol. 5, 495–508.Google Scholar
  17. Dean, R. B. (1941).Biol. Symp. 3, 331–348.Google Scholar
  18. De Weer, P. (1985). InThe Kidney: Physiology and Pharmacology (Seldin, D. W., and Giebisch, G., eds.), Raven Press, New York pp. 31–48.Google Scholar
  19. De Weer, P., Gadsby, D. C., and Rakowski, R. F. (1988).Annu. Rev. Physiol. 50, 225–241.Google Scholar
  20. Eisenrauch, A., Grell, E., and Bamberg, E. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 317–326.Google Scholar
  21. Esmann, M. (1984).Biochim. Biophys. Acta 787, 81–89.Google Scholar
  22. Esmann, M., and Skou, J. C. (1985).Biochem. Biophys. Res. Commun. 127, 857–863.Google Scholar
  23. Esmann, M., Christiansen, C., Karlson, K., Hansson, G. C., and Skou, J. C. (1980).Biochim. Biophys. Acta 603, 1–12.Google Scholar
  24. Esmann, M., Horváth, L. I., and Marsh, D. (1987).Biochemistry 26, 8675–8683.Google Scholar
  25. Gadsby, D. C., Nakao, M., and Bahinski, A. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 355–371.Google Scholar
  26. Gardos, G. (1954).Acta Physiol. Acad. Sci. Hung. 6, 191–199.Google Scholar
  27. Glynn, I. M. (1956).J. Physiol. London 134, 278–310.Google Scholar
  28. Glynn, I. M. (1985). InThe Enzymes of Biological Membranes (Martonosi, A. N., ed.) Plenum Press, New York, Vol. 3, pp. 28–114.Google Scholar
  29. Glynn, I. M. (1988). InThe Na +,K + Pump. Part A: Molecular Aspects (Skou, J. C., Nørby, J. G., Maunsbach, A. B., and Esmann, M., eds.), Alan R. Liss, New York, pp. 435–460.Google Scholar
  30. Glynn, I. M., and Richards, D. E. (1982).J. Physiol. London 330, 17–43.Google Scholar
  31. Glynn, I. M., Hara, Y., and Richards, D. E., (1984).J. Physiol. London 351, 531–547.Google Scholar
  32. Goldin, S. M. (1977).J. Biol. Chem. 252, 5630–5642.Google Scholar
  33. Goldshleger, R., Karlish, S. J. D., Rephaeli, A., and Stein, W. D. (1987).J. Physiol. London 387, 331–355.Google Scholar
  34. Harris, E. J., and Maizels, M. (1951).J. Physiol. London 113, 506–524.Google Scholar
  35. Haupert, G. T. (1988). InThe Na +,K + Pump. Part B: Cellular Aspects (Skou, J. C., Nørby, J. G., Maunsbach, A. B., and Esmann, M., eds.), Alan R. Liss, New York, pp. 297–320.Google Scholar
  36. Hayashi, Y., Mimura, K., Matsui, H., and Tagaki, T. (1989).Biochim. Biophys. Acta 983, 217–229.Google Scholar
  37. Hayashi, Y., Mimura, K., Matsui, H., and Tagaki, T. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 2), pp. 281–284.Google Scholar
  38. Hegyvary, C., and Post, R. L. (1971).J. Biol. Chem. 246, 5234–5240.Google Scholar
  39. Heppel, L. A. (1939).Am. J. Physiol. 127, 385–391.Google Scholar
  40. Heppel, L. A., and Schmidt, C. L. A. (1938).Univ. Calif. Publ. Physiol. 8, 189–196.Google Scholar
  41. Hevesy, G. (1938).Enzymologia 5, 138–157.Google Scholar
  42. Hodgkin, A. L., and Keynes, R. D. (1955).J. Physiol. London 128, 28–60.Google Scholar
  43. Hoffman, J. F. (1962).Circulation 26, 1201–1213.Google Scholar
  44. Hokin, L. E. Dahl, J. L., Deupree, J. C., Dixon, J. F., Hackney, J. F., and Perdue, J. F. (1973).J. Biol. Chem. 248, 2593–2605.Google Scholar
  45. Jørgensen, P. L. (1974).Biochim. Biophys. Acta 356, 36–52.Google Scholar
  46. Jørgensen, P. L. (1975a).Q. Rev. Biophys. 7, 239–274.Google Scholar
  47. Jørgensen, P. L. (1975b).Biochim. Biophys. Acta 401, 399–415.Google Scholar
  48. Jørgensen, P. L., and Andersen, J. P. (1988).J. Memb. Biol. 103, 95–120.Google Scholar
  49. Jørgensen, P. L., and Skou, J. C. (1968).Biochem. Biophys. Res. Commun. 37, 39–46.Google Scholar
  50. Kapakos, J. G., and Steinberg, M. (1982).Biochem. Biophys. Acta 693, 493–496.Google Scholar
  51. Karlish, S. J. D. (1980).J. Bioenerg. Biomembr. 12, 111–136.Google Scholar
  52. Karlish, S. J. D., and Kempner, E. S. (1984).Biochim. Biophys. Acta 776, 288–298.Google Scholar
  53. Karlish, S. J. D., and Yates, D. W. (1978).Biochim. Biophys. Acta 527, 115–130.Google Scholar
  54. Karlish, S. J. D., Yates, D. W., and Glynn, I. M. (1978).Biochim. Biophys. Acta 525, 252–264.Google Scholar
  55. Karlish, S. J. D., Goldshleger, R., and Stein, W. D. (1990).Proc. Natl. Acad. Sci. USA 87, 4566–4570.Google Scholar
  56. Kepner, G. R., and Macey, R. I. (1968).Biochim. Biophys. Acta 163, 188–203.Google Scholar
  57. Kernan, R. P. (1962).Nature (London)193, 986–987.Google Scholar
  58. Kyte, J. (1971).J. Biol. Chem. 246, 4157–4165.Google Scholar
  59. Klodos, I., and Forbush, B., III. (1988).J. Gen. Physiol. 92, 46.Google Scholar
  60. Lane, L. K., Copenhaver, J. H., Lindenmayer, G. E., and Schwartz, A. (1973).J. Biol. Chem. 248, 7197–7200.Google Scholar
  61. Läuger, P. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 303–315.Google Scholar
  62. Libet, B. (1948).Fed. Proc. 7, 72.Google Scholar
  63. Lingrel, J. B., Orlowski, J., Price, E. M., and Pathak, B. G. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 1–16.Google Scholar
  64. Lundegårdh, H. (1940).Ann. Agric. College Sweden 8, 233–404.Google Scholar
  65. Mahaney, J. E., Girard, J. P., and Grisham, C. M. (1990).FEBS Lett. 260, 160–164.Google Scholar
  66. Maizels, M. (1954).Symp. Soc. Exp. Biol. 8, 202–227.Google Scholar
  67. Marsh, D. (1989). InBiological Magnetic Resonance, Spin Labeling Theory and Applications (Berliner, L. J., and Reuben, J., eds.), Plenum Press, New York, Vol. 8, pp. 255–303.Google Scholar
  68. Maunsbach, A. G., Skriver, E., and Hebert, H. (1991), InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series. Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 159–172.Google Scholar
  69. Modyanov, N., Lutsenko, S., Chertova, E., and Efremov, R. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 99–115.Google Scholar
  70. Nørby, J. G., and Jensen, J. (1971).Biochim. Biophys. Acta 233, 104–116.Google Scholar
  71. Nørby, J. G., and Jensen, J. (1989).J. Biol. Chem. 264, 19458–19558.Google Scholar
  72. Nørby, J. G., and Klodos, I. (1988), InThe Na +,K + Pump. Part A: Molecular Aspects (Skou, J. C., Nørby, J. G., Maunsbach, A. B., and Esmann, M., eds.), Alan R. Liss, New York, pp. 249–270.Google Scholar
  73. Nørby, J. G., Klodos, I., and Christiansen, N. O. (1983).J. Gen. Physiol. 82, 725–759.Google Scholar
  74. Ottolenghi, P. (1979).Eur. J. Biochem. 99, 113–131.Google Scholar
  75. Ottolenghi, P., and Ellory, J. C. (1983).J. Biol. Chem. 258, 14895–14907.Google Scholar
  76. Pedemonte, C. H., and Kaplan, J. H. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 2), pp. 309–312.Google Scholar
  77. Plesner, I. W., Plesner, L., Nørby, J. G., and Klodos, I. (1981).Biochim. Biophys. Acta 643, 483–494.Google Scholar
  78. Post, R. L., and Jolly, P. (1957).Biochim. Biophys. Acta 25, 118–128.Google Scholar
  79. Post, R. L., Kume, S., Tobin, T., Orcutt, B., and Sen, A. K. (1969).J. Gen. Physiol. 54, 306s-326s.Google Scholar
  80. Post, R. L., Hegyvary, C., and Kume, S. (1972).J. Biol Chem. 247, 6530–6540.Google Scholar
  81. Post, R. L. and Suzuki, K. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H. and De Weer, P., eds.) Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 201–210.Google Scholar
  82. Price, E. M., and Lingrel, J. B. (1988).Biochemistry 27, 8400–8408.Google Scholar
  83. Rakowski, R. F. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), pp. 339–353.Google Scholar
  84. Repke, K. R. H. (1963). InNew Aspects of Cardiac Glycosides (Willbrandt, W., ed.), Pergamon, New York, Vol. 3, pp. 47–73.Google Scholar
  85. Robertson, J. D. (1959).Biochem. Soc. Symp. 16, 3–43.Google Scholar
  86. Roelofsen, B., and Van Deenen, L. L. M. (1973).Eur. J. Biochem. 40, 245–257.Google Scholar
  87. Schatzmann, H. J. (1953).Helv. Physiol. Pharmacol. Acta 11, 346–354.Google Scholar
  88. Schwarz, W., and Vasilets, L. A. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 1), 327–338.Google Scholar
  89. Schwartz, A. (1983). InCurrent Topics in Membranes and Transport. Structure and Mechanism of the Na/K Pump (Hoffman, J. F., and Forbush, B., III, eds.), Academic Press, New York Vol. 19, pp. 825–855.Google Scholar
  90. Sen, A. K., and Post, R. L. (1964).J. Biol. Chem. 239, 345–352.Google Scholar
  91. Shaw, T. L. (1955).J. Physiol. London 129, 464–475.Google Scholar
  92. Shull, G. E., Schwartz, A., and Lingrel, J. B. (1985).Nature (London)316, 691–695.Google Scholar
  93. Shull, G. E., Lane, L. K., and Lingrel, J. B. (1986).Nature (London)321, 429–431.Google Scholar
  94. Shull, G. E., Young, R. M., Greeb, J., and Lingrel, J. B. (1988). InThe Na +,K + Pump. Part A: Molecular Aspects (Skou, J. C., Nørby, J. G., Maunsbach, A. B., and Esmann, M., eds.), Alan R. Liss, New York, pp. 3–18.Google Scholar
  95. Singer, S. J., and Nicolson, G. L. (1972).Science 175, 720–731.Google Scholar
  96. Skou, J. C. (1957).Biochim. Biophys. Acta 23, 394–401.Google Scholar
  97. Skou, J. C. (1965).Physiol. Rev. 45, 596–617.Google Scholar
  98. Skou, J. C. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 2), pp. 317–319.Google Scholar
  99. Skou, J. C., and Esmann, M. (1979).Biochim. Biophys. Acta 567, 436–444.Google Scholar
  100. Skou, J. C., and Esmann, M. (1981).Biochim. Biophys. Acta 647, 232–240.Google Scholar
  101. Skou, J. C., and Esmann, M. (1983).Biochim. Biophys. Acta 746, 101–113.Google Scholar
  102. Skriver, E., Maunsbach, A. B., and Jørgensen, P. L. (1981).FEBS Lett. 131, 219–222.Google Scholar
  103. Slayman, C. L. (1982).Curr. Top. Membr. Transp. 16, pp. xxxi-xxxvii.Google Scholar
  104. Steinbach, H. B. (1940).J. Biol. Chem. 133, 695–701.Google Scholar
  105. Stürmer, W., Bühler, R., Apell, H.-J., and Läuger, P. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Rockefeller University Press, New York, Vol. 46 (Part 2), pp. 531–536.Google Scholar
  106. Sweadner, K. J. (1991). InThe Sodium Pump: Recent Developments (Kaplan, J. H., and De Weer, P., eds.), Society of General Physiologists Series, Vol. 46 (Part 1), pp. 63–76.Google Scholar
  107. Taniguchi, K., Suzuki, K., Sasaki, T., Tosa, H., and Shinoguchi, E. (1988). InThe Na +,K + Pump. Part A: Molecular Aspects (Skou, J. C., Nørby, J. G., Maunsbach, A. B., and Esmann, M., eds.), Alan R. Liss, New York, pp. 369–376.Google Scholar
  108. Thomas, R. C. (1969).J. Physiol. London 201, 495–514.Google Scholar
  109. Ussing, H. H. (1960). InHandbuch der Experimentellen Pharmakologie. The Alkali Metal Ions in Biology (Kruhøffer, P., Hess Thaysen, J., and Thorn, N. A., eds.), Springer Verlag, Berlin, pp. 1–195.Google Scholar
  110. Ussing, H. H., and Zerahn, K. (1951).Acta Physiol. Scand. 23, 110–127.Google Scholar
  111. Vilsen, B., Andersen, J. P., Petersen, J., and Jørgensen, P. L. (1987).J. Biol. Chem. 262, 10511–10517.Google Scholar
  112. Yoda, A., and Yoda, S. (1987).J. Biol. Chem. 262, 110–115.Google Scholar
  113. Zerahn, K. (1956).Acta Physiol. Scand. 36, 300–318.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Jens Christian Skou
    • 1
  • Mikael Esmann
    • 1
  1. 1.Institute of BiophysicsUniversity of AarhusAarhus CDenmark

Personalised recommendations