Journal of Bioenergetics and Biomembranes

, Volume 23, Issue 1, pp 29–41 | Cite as

The role of glycosyl-phosphoinositides in hormone action

  • Alan R. Saltiel


Despite significant advances in the past few years on the chemistry and biology of insulin and its receptor, the molecular events that couple the insulin-receptor interaction to the regulation of cellular metabolism remain uncertain. Progress in this area has been complicated by the pleiotropic nature of insulin's actions. These most likely involve a complex network of pathways resulting in the coordination of mechanistically distinct cellular effects. Since the well-recognized mechanisms of signal transduction (i.e., cyclic nucleotides, ion channels) appear not to be central to insulin action, investigators have searched for a novel second messenger system. A low-molecular-weight substance has been identified that mimics certain actions of insulin on metabolic enzymes. This substance has an inositol glycan structure, and is produced by the insulin-sensitive hydrolysis of a glycosyl-phosphatidylinositol in the plasma membrane. This hydrolysis reaction, which is catalyzed by a specific phospholipase C, also results in the production of a structurally distinct diacylglycerol that may selectively regulate one or more of the protein kinases C. The glycosyl-phosphatidylinositol precursor for the inositol glycan enzyme modulator is structurally analogous to the recently described glycosyl-phosphatidylinositol membrane protein anchor. Preliminary studies suggest that a subset of proteins anchored in this fashion might be released from cells by a similar insulin-sensitive, phospholipase-catalyzed reaction. Future efforts will focus on the precise role of the metabolism of glycosyl-phosphatidylinositols in insulin action.

Key Words

Glycolipids Protein phosphorylation phospholipase inositol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alemany, S., Mato, J. M., and Stralfors, P. (1987).Nature (London)330, 77–79.Google Scholar
  2. Alvarez, J. F., Cabello, M. A., Feliu, J. E., and Mato, J. M. (1987).Biochem. Biophys. Res. Commun. 147, 765–771.Google Scholar
  3. Alvarez, J. F., Varela, I., Ruiz-Albusac, J. M., and Mato, J. M. (1988).Biochem. Biophys. Res. Commun. 152, 1455–1462.Google Scholar
  4. Chan, B. L., Lisanti, M. R., Rodriguez-Boulan, E., and Saltiel, A. R. (1988).Science 241, 1670–1672.Google Scholar
  5. Chan, B. L., Chao, M. V., and Saltiel, A. (1989).Proc. Natl. Acad. Sci. USA 86, 1756–1760.Google Scholar
  6. Chao, M. V., Bothwell, M. A., Ross, A. H., Koprowski, H., Lanahan, A. A., Buck, C. R., and Schgal, A. (1986).Science 232, 518–521.Google Scholar
  7. Chou, C. D., Cull, T. J., Russel, O. S., Cherzi, R., Lebwohl, D., Ullrich, A., Rosen, O. M. (1987).J. Biol. Chem. 262, 1842–1847.Google Scholar
  8. Denton, R. M. (1986). In Advances in Cyclic Nucleotide and Protein Phosphorylation Research (Greengard, P., and Robison, G. A.), Raven Press, New York, Vol. 26, pp. 293–341.Google Scholar
  9. Elks, M. L., Jackson, M., Manganiello, V. C., and Vaughan, M. (1987).Am. J. Physiol. 252, C342-C348.Google Scholar
  10. Ellis, L., Clauser, E., Morgan, D. O., Edery, M., Roth, R. A., and Rutter, W. J. (1986).Cell 45, 721–729.Google Scholar
  11. Farese, R. V., Cooper, D. R., Konda, G., Standaert, M. L., Davis, J. S., and Pollet, R. J. (1988).Biochem. J. 256, 175–184.Google Scholar
  12. Fox, J. A., Soliz, N. M., and Saltiel, A. R. (1987).Proc. Natl. Acad. Sci. USA 84, 2663–2667.Google Scholar
  13. Gaulton, G. N., and Powlowski, J. (1988). Joslin Diabetes Symposium.Google Scholar
  14. Gaulton, G. N., Kelly, K. L., Pawlowski, J., Mato, J. M., Jarett, J. (1988).Cell 53, 970.Google Scholar
  15. Goren, J. J., Northrup, J. K., and Hollenberg, M. D. (1985).Can. J. Physiol. Pharmacol. 63, 1017–1022.Google Scholar
  16. Gottschalk, W. K., and Jarett, L. (1988).Arch. Biochem. Biophys. 261, 175–185.Google Scholar
  17. Hawley, D. M., Maddux, B. A., Patel, R. G., Wong, K.-Y., Mamula, P. W., Firestone, G. L., Burnetti, A., Verspohl, E., and Goldfine, I. D. (1989).J. Biol. Chem. 264, 2438–2444.Google Scholar
  18. Hereld, D., Hart, G. W., and Englund, P. T. (1988).Proc. Natl. Acad. Sci. USA 85, 8914–8918.Google Scholar
  19. Isaksson, O. G. P., Eden, S., and Jansson, J. (1985).Annu. Rev. Physiol. 47, 483–499.Google Scholar
  20. Ishihara, M., Fedarko, N. S., and Conrad, H. E. (1987).J. Biol. Chem. 262, 4708–4716.Google Scholar
  21. Jarett, L., and Kiechle, P. L. (1984).Vitam. Horm. 41, 51–78.Google Scholar
  22. Kasuga, M., Karlsson, F. A., and Kahn, C. R. (1982).Science 215, 185–187.Google Scholar
  23. Kelly, K. L., Mato, J. M., Merida, I., and Jarett, L. (1987).Proc. Natl. Acad. Sci. USA 84, 6404–6407.Google Scholar
  24. Korn, L. J., Siebel, C. W., McCormick, F., and Roth, R. A. (1987).Science 236, 840–843.Google Scholar
  25. Larner, J., Huang, L. C., Schwartz, C. F. W., Oswald, A. S., Shen, T.-Y., Kinter, M., Tang, G., and Zeller, K. (1988).Biochem. Biophys. Res. Commun. 151, 1416–1426.Google Scholar
  26. Lisanti, M. P., Darnell, J. C., Chan, B. L., Rodriguez-Boulan, E., and Saltiel, A. R. (1989).Biochem. Biophys. Res. Commun. 164, 824–832.Google Scholar
  27. Leung, D. W., Spencer, S. A., Cachianes, G., Hammonds, R. G., Collins, C., Henzel, W. J., Barnard, R., Waters, M. J., and Wood, W. I. (1987).Nature (London)330, 537–543.Google Scholar
  28. Low, M. G., and Prasad, A. R. S. (1988).Proc. Natl. Acad. Sci. USA 85, 980–984.Google Scholar
  29. Low, M. G., and Saltiel, A. R. (1988).Science 239, 268–275.Google Scholar
  30. Luttrell, L. M., Hewlett, E. L., Romero, G., and Rogol, A. K. (1988).J. Biol. Chem. 263. 6134–6141.Google Scholar
  31. Malaisse, W. J., Albor, A., Blachier, F., Valverde, I., Sener, A., and Mato, J. M. (1989).Diabetologia 32, 295–299.Google Scholar
  32. Mato, J. M., Kelly, K. L., Abler, A., Jarett, L., Corkey, B. E., Cashel, J. A., and Zopf, D. (1987a).Biochem. Biophys. Res. Commun. 146, 764–772.Google Scholar
  33. Mato, J. M., Kelly, K. L., Abler, A., and Jarret, L. (1987b).J. Biol. Chem. 262, 2131–2137.Google Scholar
  34. Morgan, D. O., and Roth, R. A. (1987).Proc. Natl. Acad. Sci. USA 84, 41–45.Google Scholar
  35. Recio-Pinto, E., Land, F. F., and Ishii, D. N. (1984).Proc. Natl. Acad. Sci. USA 81, 2562–2566.Google Scholar
  36. Romero, G., Luttrell, L., Rogol, A., Zeller, K., Hewlett, E., and Larner, J. (1988).Science 240, 509–511.Google Scholar
  37. Rosen, O. M. (1987).Science 237, 1452–1458.Google Scholar
  38. Rothenberg, P. L., Kahn, C. R. (1988).J. Biol. Chem. 263, 15546–15552.Google Scholar
  39. Saltiel, A. R., and Cuatrecasas, P. (1986).Proc. Natl. Acad. Sci. USA 83, 5793–5797.Google Scholar
  40. Saltiel, A. R., and Cuatrecasas, P. (1988).Am. J. Physiol. 255, C1-C11.Google Scholar
  41. Saltiel, A. R., and Sorbara-Cazan, L. R. (1987).Biochem. Biophys. Res. Commun. 149, 1084–1092.Google Scholar
  42. Saltiel, A. R., Fox, J. A., Sherline, P., and Cuatrecasas, P. (1986).Science 233, 967–972.Google Scholar
  43. Saltiel, A. R., Sherline, P., and Fox, J. A. (1987).J. Biol. Chem. 262, 1116–1121.Google Scholar
  44. Witters, L. A., and Watts, T. D. (1988).J. Biol. Chem. 263, 8027–8036.Google Scholar
  45. Zick, Y., Sagi-Eisenberg, R., Pines, M., Gierschik, P., and Spiegel, A. M. (1986).Proc. Natl. Acad. Sci. USA 83, 9294.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Alan R. Saltiel
    • 1
  1. 1.The Rockefeller UniversityNew York

Personalised recommendations