Space Science Reviews

, Volume 72, Issue 1–2, pp 153–163 | Cite as

The high latitude heliospheric magnetic field

  • R. J. Forsyth
Session 2: Large-Scale Heliospheric Structure


As the Ulysses spacecraft approaches its first pass under the south pole of the sun, it is an appropriate time to review our current knowledge and predictions regarding the three dimensional behaviour of the heliospheric magnetic field, in particular at high heliographic latitudes. Optical techniques for measuring the photospheric magnetic field and observations of coronal brightness structures provide indications of the behaviour of the source of the heliospheric field in the corona. As the coronal fields are carried out into the heliosphere by the solar wind, from Parker's model we would expect that the spiral field observed in the equatorial plane should gradually unwind with latitude leading to open, approximately radial, field lines over the polar regions. Predictions of departures from, and models extending this simple picture are discussed. Both the Pioneer and Voyager spacecraft have spent brief periods in the regions above the maximum latitude of the heliospheric current sheet-relevant results from these missions are reviewed as well as results from the early stages of the out-of-ecliptic phase of the Ulysses mission. The configuration of the coronal magnetic field exhibits a strong dependence on the phase of the solar activity cycle. While the forthcoming Ulysses polar passes take place near to solar minimum, the different conditions which might be encountered on a second orbit of the sun at solar maximum are described.


Solar Wind Solar Minimum Solar Activity Cycle Coronal Magnetic Field Photospheric Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschuler, M.D. and Newkirk, G., Jr.: 1969,Solar Phys. 9, 131.Google Scholar
  2. Balogh, A.: 1986, in R.G. Marsden (ed.)The sun and the heliosphere in three dimensions, D. Reidel, Dordrecht, pp 255–266.Google Scholar
  3. Bame, S.J., Goldstein, B.E., Gosling, J.T., Harvey, J.W., McComas, D.J., Neugebauer, M. and Phillips, J.L.: 1993,Geophys. Res. Lett.,20, 2323.Google Scholar
  4. Behannon, K.W., Burlaga, L.F., Hoeksema, J.T. and Klein, L.W.: 1989,J. Geophys. Res.,94, 1245.Google Scholar
  5. Bieber, J.W., Chen, J., Matthaeus, W.H., Smith, C.W. and Pomerantz, M.A.: 1993,J. Geophys. Res.,98, 3585.Google Scholar
  6. Bohlin, J.D.: 1977, in J. Zirker (ed.),Coronal holes and high speed solar wind streams, Colorado Associated University Press, Boulder, pp 27–69.Google Scholar
  7. Burlaga, L.F., and Ness, N.F.: 1993,J. Geophys. Res.,98, 3539.Google Scholar
  8. Hoeksema, J.T.: 1991a,J. Geomag. Geoelectr.,43 Suppl., 59.Google Scholar
  9. Hoeksema, J.T.: 1991b,Adv. Space Res.,11 (1) 15.Google Scholar
  10. Hoeksema, J.T.: Wilcox, J.M. and Scherrer, P.H.: 1982,J. Geophys. Res.,87, 10,331.Google Scholar
  11. Hollweg, J.V. and Lee, M.A.: 1989,Geophys. Res. Lett.,8, 919.Google Scholar
  12. Hundhausen, A.J.: 1993,J. Geophys. Res.,98, 13,177.Google Scholar
  13. Jokipii, J.R. and Kóta, J.: 1989Geophys. Res. Lett.,16, 1.Google Scholar
  14. Klein, L.W., Burlaga, L.F. and Ness, N.F.: 1987,J. Geophys. Res.,92, 9885.Google Scholar
  15. Klein, L.W., Matthaeus, W.H., Roberts, D.A. and Goldstein, M.L.: 1992, in E. Marsch and R. Schwenn (eds.),Solar Wind Seven, Pergamon, Oxford, pp. 197–200.Google Scholar
  16. Luhmann, J., Russell, C.T. and Smith, E.J.: 1988, in V.J. Pizzo, T.E. Holzer and D.G. Sime (eds.),Proceedings of the sixth international solar wind conference, Rep. NCAR/TN-306, Natl. Cent. for Atmos. Res., Boulder, pp. 323–327.Google Scholar
  17. Ness, N.F. and Burlaga, L.F.: 1993, (Abs.),Eos, Trans. AGU,74 Suppl., 241.Google Scholar
  18. Parker, E.N.: 1958,Astrophys. J.,128, 664.Google Scholar
  19. Phillips, J.L., Balogh, A., Bame, S.J., Goldstein, B.E., Gosling, J.T., Hoeksema, J.T., McComas, D.J., Neugebauer, M., Sheeley, N.R., Jr. and Wang, Y.-M.: 1994,Geophys. Res. Lett., in press.Google Scholar
  20. Pizzo, V.J. and Goldstein, B.E.: 1987,J. Geophys. Res.,92, 7241.Google Scholar
  21. Schulz, M.: 1973,Astrophys. Space Sci.,24, 371.Google Scholar
  22. Sheeley, N.R., Jr. and Wang, Y.-M.: 1991,Solar Phys.,131, 165.Google Scholar
  23. Smith, C.W. and Bieber, J.W.: 1991,Astrophys. J.,370, 435.Google Scholar
  24. Smith, C.W. and Bieber, J.W.: 1993,J. Geophys. Res.,98, 9401.Google Scholar
  25. Smith, E.J.: 1989,Adv. Space Res.,9, (4) 159.Google Scholar
  26. Smith, E.J. and Wolfe, J.H.: 1976,Geophys. Res. Lett.,3, 137.Google Scholar
  27. Smith, E.J., Tsurutani, B.T., and Rosenberg, R.L.: 1978,J. Geophys. Res.,83, 717.Google Scholar
  28. Smith, E.J., Neugebauer, M., Balogh, A., Bame, S.J., Erdös, G., Forsyth, R.J., goldstein, B.E., Phillips, J.L. and Tsurutani, B.T.: 1993,Geophys. Res. Lett.,20, 2327.Google Scholar
  29. Suess, S.T., Thomas, B.T. and Nerney, S.F.: 1985,J. Geophys. Res.,90, 4378.Google Scholar
  30. Svalgaard, L. and Wilcox, J.M.: 1974,Science,186, 51.Google Scholar
  31. Thomas, B.T. and Smith, E.J.: 1980,J. Geophys. Res.,85, 6861.Google Scholar
  32. Thomas, B.T. and Smith, E.J.: 1981,J. Geophys. Res.,86, 11,105.Google Scholar
  33. Wang, Y.-M. and Sheeley, N.R., Jr.: 1988,J. Geophys. Res. 93, 11,227.Google Scholar
  34. Wang, Y.-M.: 1993,J. Geophys. Res.,98, 3529.Google Scholar
  35. Wenzel, K.-P., Marsden, R.G., Page, D.E. and Smith, E.J.: 1992,Astron. Astrophys. Suppl. Ser.,92, 207.Google Scholar
  36. Wilcox, J.M., and Ness, N.F.: 1965,J. Geophys. Res.,70, 5793.Google Scholar
  37. Winterhalter, D., Smith, E.J., Wolfe, J.H. and Slavin, J.A.: 1990,J. Geophys. Res.,95, 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • R. J. Forsyth
    • 1
  1. 1.The Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations