General Relativity and Gravitation

, Volume 18, Issue 7, pp 745–765 | Cite as

Numerical analysis of two-soliton solutions on a Bianchi type- II background

  • A. Curir
  • M. Francaviglia
  • C. Sgarra
Research Articles


The asymptotic behavior of a solution of vacuum Einstein equations describing the propagation of a double “soliton wave” on a Bianchi type-II background is investigated numerically.


Soliton Asymptotic Behavior Differential Geometry Einstein Equation Vacuum Einstein Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Misner, C. W. (1969).Phys. Rev. Lett. 22, 1071.Google Scholar
  2. 2.
    MacCallum, M. A. H. (1979). InGeneral Relativity, an Einstein Centenary Survey, S. W. Hawking and S. W. Israel, Eds. (Cambridge University Press, Cambridge).Google Scholar
  3. 3.
    MacCallum, M. A. H. (1973). InCargèse Lectures in Physics, Schatzman Ed.Google Scholar
  4. 4.
    MacCallum, M. A. H. (1984).Lecture Notes in Physics: Reizback Seminar on Exact Solutions of Einstein's Field Equations, W. Dietz and C. Hoenselaers, eds. (Springer Verlag, Berlin).Google Scholar
  5. 5.
    Bertotti, B., and Carr, B. J. (1980).Astrophys, J. 236, 1000.Google Scholar
  6. 6.
    Turner, M. S. (1979).Astrophys. J. 233, 685.Google Scholar
  7. 7.
    Mashoon, B. (1982).Mon. Not. R. Astron. Soc. 199, 659.Google Scholar
  8. 8.
    Bertotti, B., Carr, B. J., and Rees, M. J. (1983).Mon. Not. R. Astron. Soc. 203, 945.Google Scholar
  9. 9.
    Belinskii, V. A., and Zakharov, V. E. (1978).Sov. Phys. JETP 48, 985.Google Scholar
  10. 10.
    Belinskii, V. A., and Zakharov, V. E. (1980).Sov. Phys. JETP 50, 1.Google Scholar
  11. 11.
    Belinskii, V. A., and Fargion, D. (1980).Rend. Sem. Mat. Un. Pol. Torino 38, 1.Google Scholar
  12. 12a.
    Belinskii, V. A., and Francaviglia, M. (1982).Gen. Rel. Grav. 14, 213.Google Scholar
  13. 12b.
    Belinskii, V. A., and Francaviglia, M. (1984).Gen. Rel. Grav. 16, 1189.Google Scholar
  14. 13.
    Curir, A., and Francaviglia, M. (1985).Gen. Rel. Grav. 17(1), 1.Google Scholar
  15. 14.
    Carr, B. J., and Verdaguer, E. (1983).Phys. Rev. D 28, 2995.Google Scholar
  16. 15.
    Ibañez, P., and Verdaguer, E. (1984). Preprint.Google Scholar
  17. 16.
    Tomimatsu, A. (1980).Progr. Theor. Phys. 63(3), 1054.Google Scholar
  18. 17.
    Francaviglia, M., and Sgarra, C. (1983).Nuovo Cimento 80B, 223.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • A. Curir
    • 1
  • M. Francaviglia
    • 2
  • C. Sgarra
    • 2
  1. 1.Osservatorio Astronomico di TorinoPino TorineseItaly
  2. 2.Istituto di Fisica Matematica “J.-L. Lagrange,”Università di TorinoTorinoItaly

Personalised recommendations