Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 19, Issue 4, pp 329–340 | Cite as

Electron microscopy and image analysis of the mitochondrial outer membrane channel, VDAC

  • Carmen A. Mannella
Mini-Review

Abstract

The channel protein in the outer membrane ofNeurospora crassa mitochondria, VDAC, forms extended planar crystals on the membrane. The arrays, which are induced by phospholipase A2, are polymorphic, varying from parallelogram (P) to near-rectangular (R) geometry with increased phospholipase treatment. Computer-based analysis of projection images of negatively stained VDAC arrays indicates that the protein forms a transmembrane channel in the P array. Comparison of average images of arrays embedded in different negative stains suggests that the bore of the channel is 2–2.5 nm. The locations of functionally important lysine clusters on VDAC are inferred from the effects of succinylation on projection images of arrays negatively stained with phosphotungstate. Projection images of unstained frozen-hydrated arrays indicate the general shape of the channel and suggest each channel is formed by one 31-kDa VDAC polypeptide.

Key Words

Mitochondrial outer membrane channel electron microscopy image processing negative stain frozen-hydrated succinic anhydride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W. (1984).Nature (London)308, 32–36.Google Scholar
  2. Amos, L. A., Henderson, R., and Unwin, P. N. T. (1982).Prog. Biophys. Mol. Biol. 39, 183–231.Google Scholar
  3. Benz, R. (1985).CRC Crit. Rev. Biochem. 19, 145–190.Google Scholar
  4. Cohn, E. J., and Edsall, J. T. (1943). InProteins, Amino Acids and Peptides as Ions and Dipolar Ions (Cohn, E. J., and Edsall, J. T., eds.), Reinhold, New York, pp. 370–381.Google Scholar
  5. Colombini, M. (1979).Nature (London)279, 643–645.Google Scholar
  6. Colombini, M. (1985). InIon Channel Reconstitution (Miller, C., ed.), Plenum Press, New York and London, pp. 533–552.Google Scholar
  7. DeRosier, D. J., and Klug, A. (1968).Nature (London)217, 130–134.Google Scholar
  8. Doring, C., and Colombini, M. (1985).J. Membr. Biol. 83, 81–86.Google Scholar
  9. Douce, R., Guillot-Salomon, T., and Lance, C. (1968).Bull. Soc. Fr. Physiol. Veg. 14, 351–373.Google Scholar
  10. Fernandez-Moran, H. (1962).Circulation 26, 1039–1065.Google Scholar
  11. Forte, M., Guy, H. R., and Mannella, C. A. (1987).J. Bioenerg. Biomembr. 19, 341–350.Google Scholar
  12. Frank, J. (1982).Optik 63, 67–89.Google Scholar
  13. Freitag, H., Neupert, W., and Benz, R. (1982).Eur. J. Biochem. 123, 629–639.Google Scholar
  14. Gilbert, O. C. F. (1972).Proc. R. Soc. London B 182, 89–102.Google Scholar
  15. Glaeser, R., and Taylor, K. (1978).J. Microsc. 112, 127–138.Google Scholar
  16. Kagawa, Y., and Racker, E. (1966).J. Biol. Chem. 241, 2475–2482.Google Scholar
  17. Lepault, J., Booy, F. P., and Dubochet, J. (1983).J. Microsc. 129, 89–102.Google Scholar
  18. Linden, M., and Gellerfors, P. (1983).Biochim. Biophys. Acta 736, 125–129.Google Scholar
  19. Mannella, C. A. (1981).Biochim. Biophys. Acta 645, 33–40.Google Scholar
  20. Mannella, C. A. (1982).J. Cell Biol. 94, 680–687.Google Scholar
  21. Mannella, C. A. (1984).Science 224, 165–166.Google Scholar
  22. Mannella, C. A. (1985).Methods Enzymol. 125, 595–610.Google Scholar
  23. Mannella, C. A. (1986)Biochim. Biophys. Acta 861, 67–73.Google Scholar
  24. Mannella, C. A., and Bonner, W. D., Jr. (1975).Biochim. Biophys. Acta 413, 226–233.Google Scholar
  25. Mannella, C. A., and Colombini, M. (1984).Biochim. Biophys. Acta 774, 206–214.Google Scholar
  26. Mannella, C. A., and Frank, J. (1984).Ultramicroscopy 13, 93–102.Google Scholar
  27. Mannella, C. A., and Frank, J. (1987a)J. Ultrastruct. Molec. Struct. Res., in press.Google Scholar
  28. Mannella, C. A., and Frank, J. (1987b).Biophys. J. 51, 230a.Google Scholar
  29. Mannella, C. A., Colombini, M., and Frank, J. (1983).Proc. Natl. Acad. Sci. USA 80, 2243–2247.Google Scholar
  30. Mannella, C. A., Radermacher, M., and Frank, J. (1984). InProceedings of the Electron Microscope Society of America (Bailey, G. W., ed.), San Francisco Press, San Francisco, pp. 644–645.Google Scholar
  31. Mannella, C. A., Ribeiro, A., and Frank, J. (1986).Biophys. J. 49, 307–318.Google Scholar
  32. Parsons, D. P. (1963).Science 140, 985–987.Google Scholar
  33. Parsons, D. P., Bonner, W. D., Jr., and Verboon, J. G. (1965).Can. J. Bot. 43, 647–655.Google Scholar
  34. Saxton, W. O. (1980). InElectron Microscopy at Molecular Dimensions (Baumeister, W., and Vogell, W., eds.), Springer-Verlag, Berlin, pp. 244–255.Google Scholar
  35. Schein, S. J., Colombini, M., and Finkelstein, A. (1976).J. Membr. Biol. 30, 99–120.Google Scholar
  36. Taylor, K., and Glaeser, R. M. (1976).J. Ultrastruct. Res. 55, 448–456.Google Scholar
  37. Tzaphlidou, M., Chapman, J. A., and Meek, K. M. (1982).Micron 13, 119–131.Google Scholar
  38. Unwin, P. N. T., and Henderson, R. (1975).J. Mol. Biol. 94, 425–440.Google Scholar
  39. Vignais, P. M., Nachbauer, J., and Vignais, P. V. (1969). InMitochondria: Structure and Function (Ernster, L., and Drahota, Z., eds.), Academic Press, London and New York, pp. 43–58.Google Scholar
  40. Yeung, C. L., Tung, J., Colombini, M., and Konig, T. (1986).Biophys. J. 49, 206a.Google Scholar
  41. Young, S. H., and Poo, M. (1983).Nature (London)304, 161–163.Google Scholar
  42. Zalman, L. S., Nikaido, H., and Kagawa, Y. (1980).J. Biol. Chem. 255, 1771–1774.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Carmen A. Mannella
    • 1
    • 2
  1. 1.Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbany
  2. 2.School of Public Health SciencesState University of New York at AlbanyAlbany

Personalised recommendations