Journal of Low Temperature Physics

, Volume 105, Issue 3–4, pp 705–710 | Cite as

Theory of sm1.5Ce0.5sr2Cu2Nbo10: Critical-temperature and doping effects

  • Howard A. Blackstead
  • John D. Dow
  • D. B. Pulling


For Sm1.5Ce0.5Sr2Cu2NbO10, the charge-reservoir oxygen model of superconductivity predicts: (i) Tc≈30 K (vs. the observed ≈28K); (ii) Roughly 1 percent Ni on Cu sites should drive Tc to zero; (iii) The superconductivity originates in the SrO layers; and (iv) The conduction, as with all high-temperature oxide superconductors, is necessarily p-type. The model also explains why this material can superconduct in the presence of the magnetic rare-earth ion Sm and why Gd on Sm sites does not destroy superconductivity, despite structural similarities to Sm2-zCezCuO4 and Gd2-zCezCuO4, although the former superconducts and the latter does not.

PACS numbers

74.20.Fg 74.70.Vy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. A. Blackstead and J. D. Dow,J. Appl. Phys. 78, 7175 (1995) review the evidence.Google Scholar
  2. [2]
    H. A. Blackstead and J. D. Dow,Philos. Mag. 73, 223 (1996).Google Scholar
  3. [3]
    C. Lin, G. Lu, Z.-X. Liu, and Y. F. Zhang,Physica C 194, 66 (1992).Google Scholar
  4. [4]
    J. A. Yarmoff, D. R. Clarke, W. Drube, U. O. Karlsson, A. Taleb-Ibrahimi, and F. J. Himpsel,Phys. Rev. B 36, 3967 (1988).Google Scholar
  5. [5]
    J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, G. Liang, and M. Croft, Nature337, 720 (1989).Google Scholar
  6. [6]
    I. D. Brown,Structure and Bonding in Crystals, Vol. II, edited by M. O'Keefe and A. Navrotsky, pp. 1–20 (Academic Press, New York, 1980).Google Scholar
  7. [7]
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 106, 162 (1957);108, 1175 (1957).Google Scholar
  8. [8]
    See, for example, R. Fehrenbacher and T. M. Rice,Phys. Rev. Lett. 70, 3471 (1993); and A. Millis, H. Monien, and D. Pines,Phys. Rev. B 42, 167 (1990).Google Scholar
  9. [9]
    V. Z. Kresin, H. Morawitz, and S. A. Wolf,Mechanisms of Conventional and High T c Superconductivity, (Oxford University Press, Oxford, 1993).Google Scholar
  10. [10]
    D. I. Khomskii and A. Z. Zvezdin,Solid State Commun. 66, 651 (1988); J. E. Hirsch and F. Marsiglio,Physica C 162–164, 591 (1989).Google Scholar
  11. [11]
    T. Yamashita, A. Kawakami, T. Nishihara, M. Takata, and K. Kishio, Jpn.J. Appl. Phys. 26, L671 (1987).Google Scholar
  12. [12]
    J. M. Tarascon, E. Wang, S. Kivelson, B. G. Bagley, G. W. Hull, and R. Ramesh, Phys. Rev.B 42, 218–222 (1990).Google Scholar
  13. [13]
    R.-k. Li, Y.-j. Zhu, Y.-t. Qian, and Z.-y. Chen,Physica C 176, 19 (1991).Google Scholar
  14. [14]
    T. J. Goodwin, H. B. Radousky, and R. N. Shelton,Physica C 204, 212 (1992).Google Scholar
  15. [15]
    H. A. Blackstead and J. D. Dow,Philos. Mag. 72, 529 (1995).Google Scholar
  16. [16]
    H. A. Blackstead and J. D. Dow,Pis'ma Zh. Eksperim. Teor. Fiz. 59, 262 (1994)[JETP Lett. 59, 283 (1994)] and references therein.Google Scholar
  17. [17]
    H. A. Blackstead and J. D. Dow, “Constraints imposed by the data on a successful theory of high-temperature superconductivity,” Proc.SP1E 2397,Optoelectronic Integrated Circuit Materials — Physics and Devices, edited by M. Razeghi, Y.-S. Park, and G. L. Witt, pp. 617–632 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Howard A. Blackstead
    • 1
  • John D. Dow
    • 1
    • 2
  • D. B. Pulling
    • 1
  1. 1.Department of PhysicsUniversity of Notre DameNotre DameUSA
  2. 2.Department of PhysicsArizona State UniversityTempeUSA

Personalised recommendations