Advertisement

Environmental Geology

, Volume 26, Issue 2, pp 111–120 | Cite as

Quantitative analysis of springs

  • B. A. Memon
Original Articles

Abstract

Growing demand for groundwater resources and stringent environmental concerns has led to large groundwater investigations, including characterization of aquifer systems that are hydraulically connected to springs. A pumping test is one of the most reliable means of quantifying hydraulic characteristics and the response of natural springs to pumping because it yields results that, in general, are representative of a larger area than are results from a single point observation. Recharge to the aquifer sustaining discharge from springs must be evaluated prior to the utilization of springs. The spring hydrograph is analyzed, as the shape of a hydrograph is a reflection of the response of the aquifer to recharge. The form and rate of recession provide significant information on the storage, lithological composition, and structural characteristics of the aquifer system sustaining the spring. Water tracing techniques have been developed and used over a period of centuries to delineate catchment boundaries, estimate groundwater flow velocities, determine areas of recharge, and identify sources of pollution of spring water.

Key words

Springs Aquifer systems Recharge/discharge Groundwater resources Natural tracers Artificial tracers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson TC (1985) Present and future direction in karst hydrogeology. Ann Soc Geol Belgique 108: 293–296Google Scholar
  2. Back W and Zötl J (1975) Application of geochemical principles, isotopic methodology, and artificial tracers to karst hydrology. In: Burger A, Dubertret L (Eds), Hydrogeology of karstic terrains, series B, vol 3. Norway International Union of Geological Science. pp 105–121Google Scholar
  3. Bakalowicz M (1977) Etude du degre d'organisation des ecoulements souterrains dans les aquiferes carbonates par une methode hydrogeochimique nouvelle. CR Acad Sci Paris, 284D: 2463–2466Google Scholar
  4. Burdon DJ and Papakis N (1963) Handbook of karst hydrogeology. Athens: Institute for Geology and Subsurface Research/FAOGoogle Scholar
  5. Dansgaard WF (1964) Stable isotopes in precipitation. Tellus 16: 436–449Google Scholar
  6. DeWiest RJM (1965) Geohydrology. New York: John Wiley. p 366Google Scholar
  7. Even H, Carmi I, Magaritz M, and Gerson R (1986) Timing the transport of water through the upper vadose zone in a karstic system above a cave in Israel. Earth Surf Proc Landf 11: 181–191Google Scholar
  8. Ferris JG, Knowles DB, Brown RH, and Stallman RW (1962) Theory of aquifer tests. US Geol Survey, Water Supply Paper 1536-E. 174 ppGoogle Scholar
  9. Fetter CW Jr (1980) Applied hydrogeology. Columbus, Ohio: Charles E Merrill. 488 ppGoogle Scholar
  10. Fontes J-C (1980) Environmental isotopes in groundwater hydrology. In: Fritz P, Fontes J (Eds), Handbook of environmental Isotope geochemistry, vol 1. Amsterdam: Elsevier. pp 75–140Google Scholar
  11. Fontes J-C (1983) Dating of groundwater. In: Guidebook on nuclear techniques in hydrology. Report Series No 91. Vienna: IAEA. pp 285–317Google Scholar
  12. Ford D and Williams P (1992) Karst geomorphology and hydrology. New York: Chapman and Hall. p 601Google Scholar
  13. Fritz P and Fontes J-C (eds) (1980) Handbook of environmental isotope geochemistry, vol 1, The terrestrial environment. Amsterdam: ElsevierGoogle Scholar
  14. Gerba CP, Wallis C, and Melnick JL (1975) Fate of wastewater bacteria and viruses in soil. J Irrig Drainage Div, Am Soc Civ Eng 101: 157–174Google Scholar
  15. International Atomic Energy Agency (1981) Stable isotope hydrology, Technical Report Series No 210. Vienna: IAEAGoogle Scholar
  16. International Atomic Energy Agency (1983) Guidebook on nuclear techniques in hydrology. Technical Reports Series No. 91. Vienna: IAEAGoogle Scholar
  17. International Atomic Energy Agency (1984) Isotope hydrology 1983. Vienna: IAEAGoogle Scholar
  18. Issar A, Quijana JL, Gat JR, and Castro M (1984) The isotope hydrology of the groundwaters of central Mexico. J Hydrol 71: 201–224Google Scholar
  19. Kass W (1967) Erfahrungen mit Uranin bei Farbversachen. Steir Beitr Hydrogeol 18/19: 123–340Google Scholar
  20. Lallemand A and Grison G (1970) Contribution a la selection de traceurs radioactifs pour l'hydrologie. Isotopes in hydrology, Proc Symp 833-9. Vienna: IAEA.Google Scholar
  21. Lloyd JW (1981) Environmental isotopes in groundwater. In Lloyd JW (Ed), Case-studies in groundwater resources evaluation, Oxford: Clarendon. pp 113–132Google Scholar
  22. Maillet E (1905) Essais d'hydraulique souterraine et fluviale. Paris: HermannGoogle Scholar
  23. Romero JC (1970) The movement of bacteria and virus through porous media. Ground Water 8(2): 37–48Google Scholar
  24. Rozanski K and Florkowski T (1979) Krypton-85 dating of groundwater. In Isotope hydrology 1978 (Proc Symp Neuherberg 1978, vol 2). Vienna: IAEA. p 949Google Scholar
  25. Salvamoser J (1984) Krypton-85 for groundwater dating. In Isotope hydrology 1983, Vienna: IAEA. pp 831–832Google Scholar
  26. Shuster ET and White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: A possible means of characterisizing carbonate aquifers. J Hydrol 14: 93–128Google Scholar
  27. Siegenthaler U, Schotterer U, and Muller I (1984) Isotopic and chemical investigations of springs from different karst zones in the Swiss Jura. In Isotope hydrology 1983. Vienna: IAEA. pp 153–172Google Scholar
  28. Smart CC (1983a) Hydrology of a glacierised alpine karst. PhD thesis. McMaster University, Hamilton, Ontario, CanadaGoogle Scholar
  29. Smart CC (1983b) The hydrology of Castleguard Karst, Columbia Icefields, Alberta, Canada. Arct Alp Res 15(4): 741–786Google Scholar
  30. Smart PL and Brown MC (1973) The use of activated carbon for the detection of the tracer dye rhodamine WT. Proc 6 Internat Speleo Cong Olomouc, CSSR 4: 285–292Google Scholar
  31. Smart PL and Freiderich H (1982) An assessment of the methods and results of water-tracing experiments in the Gunung Mulu National Park, Sarawak. Trans Br Cave Res Assoc 9(2): 199–212Google Scholar
  32. White WB (1988) Geomorphology and hydrology karst terrains. New York: Oxford University Press. p 464Google Scholar
  33. Wilson JF (1968) Fluorometric procedures for dye tracing. Techniques of water resources investigations of the United States Geological Survey TWI 03-A12. Washington DC. p 31Google Scholar
  34. Wilson JF, Cobb ED, and Kilpatrick FA (1986) Fluorometric procedures for dye tracing. Techniques of water resources investigation, 03-A12. Washington DC: US Geological Survey. p 34Google Scholar
  35. Yonge CJ, Ford DC, Gray J, and Schwarcz HP (1985) Stable isotope studies of cave seepage water. Chem Geol 58: 97–105Google Scholar
  36. Yurtsever Y (1983) Models for tracer data analysis. In Guidebook on nuclear techniques in hydrology. Technical Report Series No 91. Vienna: IAEA. pp 381–402Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • B. A. Memon
    • 1
  1. 1.P.E. LaMoreaux & Associates, Inc.TuscaloosaUSA

Personalised recommendations