Strength of Materials

, Volume 11, Issue 5, pp 476–485 | Cite as

High-temperature creep and the dislocation structure of tungsten single crystals

  • M. M. Myshlyaev
  • Y. A. Romanov
  • O. N. Sen'kov
  • I. I. Khodos
  • V. G. Glebovskii
Scientific-Technical Section


Tungsten Dislocation Structure Tungsten Single Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. I. Pekarev, M. V. Gartman, and Yu. D. Chistyakov, “A method of tensile testing of tungsten and molybdenum single crystals,” Zavod. Lab.,32, No. 2, 228–231 (1966).Google Scholar
  2. 2.
    V. G. Glebovskii, Ch. V. Kopetskii, M. M. Myshlyaev, and Yu. A. Romanov, “The steady creep and dislocation structure of molybdenum,” Fiz. Met. Metalloved.,41, 621–629 (1976).Google Scholar
  3. 3.
    Yu. D. Chistyakov and A. I. Pekarev, “Methods of metallographic investigation of cast and wrought tungsten,” Zavod. Lab.,31, 1467–1473 (1965).Google Scholar
  4. 4.
    Tsch. V. Kopezky, A. I. Paschkovsky, and W. A. Gontscharow, “Plastische Verformung Verschiedenartig orientierter Molybdänkristalle, die verschiedene Mengen Kohlenstoffenthalten,” Monat. für Chemie,103, 92–99 (1972).Google Scholar
  5. 5.
    L. K. France and M. H. Loretto, “The influence of the size of diffracting vectors on the visibility of dislocations in α-iron,” Proc. R. Soc.,A307, 83–96 (1968).Google Scholar
  6. 6.
    M. H. Loretto and L. K. France, “Some factors influencing the visibility of dislocations in transmission electron microscopy,” Phys. Status Solidi,35, 167–171 (1969).Google Scholar
  7. 7.
    D. J. Dingley, “Dislocation invisibility in dark-field electron microscopy,” Phys. Status Solidi,38, 345–355 (1970).Google Scholar
  8. 8.
    P. Hirsch, A. Hovey, R. Nicholson, et al., Electron Microscopy of Thin Crystals [Russian translation], Mir, Moscow (1968).Google Scholar
  9. 9.
    M. M. Myshlyaev, Sh. Kh. Khannanov, and I. I. Khodos, “The structure of dislocation wall boundaries of blocks in deformed germanium,” Izv. Akad. Nauk SSSR, Ser. Fiz.,38, 2389–2402 (1974).Google Scholar
  10. 10.
    J. Weertman, “Theory of steady-state creep based on dislocation climb,” J. Appl. Phys.,26, 1213–1217 (1955).Google Scholar
  11. 11.
    J. Weertman, “Steady-state creep through dislocation climb,” J. Appl. Phys.,28, 362–364 (1957).Google Scholar
  12. 12.
    J. Weertman, “Dislocation climb theory of steady-state creep,” Trans. Am. Soc. Met.,61, 680–694 (1968).Google Scholar
  13. 13.
    O. D. Sherby, “Factors affecting the high-temperature strength of polycrystalline solids,” Acta Met.,10, 135–147 (1962).Google Scholar
  14. 14.
    J. Dorn, Creep and Recovery [Russian translation], Metallurgizdat, Moscow (1961).Google Scholar
  15. 15.
    V. M. Rozenberg, Fundamentals of the Heat Resistance of Metallic Materials [in Russian], Metallurgiya, Moscow (1973).Google Scholar
  16. 16.
    S. Takeuchi and A. S. Argon, “Steady-state creep of single-phase crystalline matter at high temperature,” J. Mater. Sci.,11, 1542–1566 (1976).Google Scholar
  17. 17.
    F. R. N. Nabarro, “Deformation of crystals by the motion of single ions,” in: Report of of a Conference on Strength of Solids, Physics Society (1948), pp. 75–80.Google Scholar
  18. 18.
    C. Herring, “Diffusional viscosity of a polycrystalline solid,” J. Appl. Phys.,21, 437–445 (1950).Google Scholar
  19. 19.
    I. M. Lifshits, “A theory of diffusion-viscous flow of polycrystalline bodies,” Zh. Eksp. Theor. Fiz.,44, 1349–1367 (1963).Google Scholar
  20. 20.
    J. Friedel, Dislocations, Pergamon (1964).Google Scholar
  21. 21.
    C. R. Barrett and W. D. Nix, “A model for steady state creep based on the motion of jogged screw dislocations,” Acta Met.,13, 1247–1258 (1965).Google Scholar
  22. 22.
    N. E. Mott, “A discussion of some models of the rate-determining process in creep,” in: Creep and Fracture of Metals at High Temperatures, Her Majesty's Stationary Office, London (1956), pp. 21–24.Google Scholar
  23. 23.
    L. I. Ivanov and V. A. Yanushkevich, “The mechanism of fatigue creep of body-centered cubic metals at high temperatures. The creep of zirconium,” Fiz. Met. Metalloved.,17, 112–117 (1964).Google Scholar
  24. 24.
    H. P. Stüwe, “Dynamische erholung bei der varmverformung,” Acta Met.,13, 1337–1342 (1965).Google Scholar
  25. 25.
    F. R. N. Nabarro, “Steady-state diffusional creep,” Phil. Mag.,16, 231–237 (1967).Google Scholar
  26. 26.
    V. K. Lindroos and H. M. Miekk-oja, “Knitting of dislocation networks by means of stress induced climb in an aluminum-magnesium alloy,” Phil. Mag.,17, 119–133 (1968).Google Scholar
  27. 27.
    J. Weertman and J. R. Weertman, “Mechanical properties strongly temperature dependent,” in: Physical Metallurgy, R. W. Cahn (editor), Amsterdam (1965), pp. 793–819.Google Scholar
  28. 28.
    H. M. Miekk-oja and V. K. Lindroos, “Dislocation structures in deformation at elevated temperatures,” in: Constitutive Equations in Plasticity, A. S. Argon (editor), MIT Press, Cambridge-London (1975), pp. 327–358.Google Scholar
  29. 29.
    B. Ilschner and A. S. Argon, Constitutive Equations in Plasticity, MIT Press, Cambridge, Massachusetts (1975).Google Scholar
  30. 30.
    R. Lagneborg and P. Oström, “A dislocation link length model for high temperature creep,” in: Proc. Materials Center, Royal Inst. Technology, Stockholm (March, 1976), pp. 1–23.Google Scholar
  31. 31.
    W. Blum, “Dislocation models of plastic deformation of metals at elevated temperatures,” Z. Met.,68, 484–492 (1977).Google Scholar
  32. 32.
    M. M. Myshlyaev, “The creep and dislocation structure of crystals at moderate temperatures,” in: Fourth International Conference on the Strength of Metals and Alloys, Vol. 3, Nancy, August–September (1976), pp. 1037–1091.Google Scholar
  33. 33.
    W. Blüm, “Role of dislocation annihilation during steady-state deformation,” Phys. Status Solidi (b),45, 561–571 (1971).Google Scholar
  34. 34.
    J. H. Gittus, “Theoretical equation for steady-state dislocation creep. Effects of jogdrag and cell-formation,” Phil. Mag.,34, 401–411 (1976).Google Scholar
  35. 35.
    M. M. Myshlyaev, I. I. Khodos, O. N. Sen'kov, and Yu. A. Romanov, “The role of dislocation with a Burgers' vector of α<001> in high-temperature creep of molybdenum,” in: Eleventh International Congress of Crystallography [in Russian], Warsaw (1978).Google Scholar
  36. 36.
    M. M. Myshlyaev, I. I. Khodos, O. N. Senkov, and Yu. A. Romanov, “Features of the subboundarystructure in deformed molybdenum single crystals,” in: Ninth International Congress on Electron Microscopy, Vol. 1, Toronto (1978), pp. 316–317.Google Scholar
  37. 37.
    S. Karashima, T. Hasegawa, and M. Vokota, “Studies on the substructure developed during creep of aluminum,” J. Jpn. Inst. Met.,32, No. 1, 218–224 (1968).Google Scholar
  38. 38.
    H. Gleiter, “The migration of small angle boundaries,” Phil. Mag.,20, 821–830 (1969).Google Scholar
  39. 39.
    M. M. Myshlyaev, D. Caillard, and J. L. Martin, “Creep at intermediate temperatures: an in situ study of the evolution of the cell boundaries in-the high voltage electron microscope,” Scripta Met.,12, 157–160 (1978).Google Scholar
  40. 40.
    S. F. Exell and D. H. Warrington, “Subgrain boundary migration in aluminum,” Phil. Mag.,26, 1121–1136 (1972).Google Scholar
  41. 41.
    J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill (1967).Google Scholar
  42. 42.
    V. A. Dreshpak, “Characteristics of the elasticity of tungsten and molybdenum single crystals,” Probl. Prochn., No. 6, 102–104 (1969).Google Scholar
  43. 43.
    S. Z. Bokshtein, Diffusion in Metals with a Body-Centered Lattice [in Russian], Metallurgizdat, Moscow (1969).Google Scholar
  44. 44.
    N. F. Kazakov, Diffusion Welding in Vacuum [in Russian], Mashinostroenie, Moscow (1968).Google Scholar
  45. 45.
    Y. Adda and J. Philibert, La diffusion dans les solids, Press University de France, V. Z., Paris (1966).Google Scholar
  46. 46.
    S. D. Gertsriken and I. Ya. Dekhtyar, Diffusion in Metals and Alloys in the Solid Phase [in Russian], Fizmatgiz, Moscow (1960).Google Scholar
  47. 47.
    B. I. Smimov, V. V. Shpeizman, T. V. Privalova, and T. V. Samoilova, “The migration of small boundary angles in steady creep of crystals,” Fiz. Tverd. Tela,18, 2432–2434 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • M. M. Myshlyaev
    • 1
  • Y. A. Romanov
    • 1
  • O. N. Sen'kov
    • 1
  • I. I. Khodos
    • 1
  • V. G. Glebovskii
    • 1
  1. 1.Institute of Solid PhysicsChernogolovka

Personalised recommendations