Strength of Materials

, Volume 22, Issue 6, pp 792–798 | Cite as

Method of predicting endurance of structural alloys on large load bases from data of high-frequency tests

  • A. V. Voinalovich
  • D. G. Kofto
  • L. E. Matokhnyuk
  • A. A. Khlyapov
Scientific-Technical Section
  • 18 Downloads

Abstract

The article suggests a method of determining the parameters of the equation of the fatigue curve taking into account the effect of the frequency and asymmetry of the load cycles. The dependences of the parameters of the equation on the coefficient of asymmetry of the load cycles are established. The article demonstrates the efficiency of the suggested method of predicting endurance of smooth specimens and of specimens with stress raisers on larger bases of low-frequency loading from the results of high-frequency tests by comparing a large amount of experimental investigations of the fatigue limit of the alloys AMg6N, ÉP202, and VNS-25 with calculated data.

Keywords

Fatigue Experimental Investigation Calculated Data Fatigue Limit Load Cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Strength of Materials and Structural Elements at Sonic and Ultrasonic Loading Frequencies: Materials of an International Symposium [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  2. 2.
    J. M. Wells, O. Buck, L. D. Roth, J. K. Tien (eds.), Ultrasonic Fatigue. Proceedings of the 1st International Conference on Fatigue and Corrosion Fatigue up to Ultrasonic Frequencies, New York (1982).Google Scholar
  3. 3.
    M. Kikukawa, K. Ohji, and K. Ogura, “Push-pull fatigue strength of mild steel at very high frequencies of stress up to 100 kc/s,” Trans. ASME, D,87, No. 4, 857–864 (1965).Google Scholar
  4. 4.
    L. E. Matokhnyuk, Accelerated Fatigue Tests by High-Frequency Loading [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  5. 5.
    D. G. Kofto, “Effect of the frequency and asymmetry of cyclic loading on the fatigue limit of alloy AMg6oN,” Probl. Prochn., No. 2, 101–106 (1990).Google Scholar
  6. 6.
    A. V. Voinalovich, D. G. Kofto, L. E. Matokhnyuk, and A. A. Khlyapov, “Effect of the asymmetry of the load cycle on the fatigue limit of alloys ÉP202 and VNS-25 at different loading frequencies,” Probl. Prochn., No. 8, 86–90 (1990).Google Scholar
  7. 7.
    T. Yu. Yakovleva, “Special features of the deformation and failure of aluminum alloy under loading,” in: Strength of Materials and Structural Elements at Sonic and Ultrasonic Loading Frequencies: Abstracts of Papers of the All-Union Conference (Kiev, December 7–8, 1988), Inst. Probl. Prochn. Akad. Nauk UkrSSR, Kiev (1988), p. 52.Google Scholar
  8. 8.
    M. N. Stepnov, Statistical Processing of the Results of Mechanical Tests [in Russian], Mashinostroenie, Moscow (1972).Google Scholar
  9. 9.
    B. Weiss, H. Müllner, R. Stickler, P. Lukas, and L. Kunz, “Influence of frequency on fatigue limit and fatigue crack growth behavior of polycrystralline Cu,” in: Ach. in Fracture. Fracture 84, New Delhi, 4–10 Dec. 1984, Issue 3, Pergamon Press (1986), pp. 1783–1791.Google Scholar
  10. 10.
    L. E. Matokhnyuk, “Effect of the loading frequency on the endurance of light alloys,” in: Strength of Materials and Structural Elements at Sonic and Ultrasonic Loading Frequencies: Abstracts of Papers of the All-Union Conference (Kiev, December 7–8, 1988), Inst. Probl. Prochn. Akad. Nauk UkrSSR, Kiev (1988), p. 7.Google Scholar
  11. 11.
    I. A. Oding, Permissible Stresses in Engineering and Fatigue Strength of Materials [in Russian], Mashgiz, Moscow (1947).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. V. Voinalovich
    • 1
  • D. G. Kofto
    • 1
  • L. E. Matokhnyuk
    • 1
  • A. A. Khlyapov
    • 1
  1. 1.Institute of the Strength of MaterialsAcademy of Sciences of the Ukrainian SSRKiev

Personalised recommendations