Advertisement

Strength of Materials

, Volume 22, Issue 10, pp 1445–1451 | Cite as

Phase transitions in superplasticity

  • Ya. I. Rudaev
Scientific-Technical Section

Abstract

Existing ideas about reasons for the occurrence and phenomenology of development of the superplasticity effect are analyzed. It is shown that within the scope of the thermodynamic approach superplasticity depends on a diffuse phase transition accomplished with heating and deformation. Traditional evaluation of super-plasticity from the value of the rate sensitivity factor is considered. Conditions are determined which should be fulfilled with transfer of material into a super-plastic condition, in particular for wrought aluminum alloys without a previously prepared structure.

Keywords

Aluminum Phase Transition Aluminum Alloy Rate Sensitivity Sensitivity Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  2. 2.
    I. I. Novikov, “Determination of the understanding of ‘superplasticity’,” All-Union Sci. Tech. Conf. on Superplasticity of Metals (Moscow, Dec. 1981), Proc., Part 1, Moscow Inst. of Steels and Alloys (1981).Google Scholar
  3. 3.
    W. Backofen, Deformation Processing, Addison-Wesley (MA), 1972.Google Scholar
  4. 4.
    E. I. Unksov and A. G. Ovchinnikov (eds.), Plastic Deformation Theory for Metals [in Russian], Mashinostroenie, Moscow (1983).Google Scholar
  5. 5.
    A. P. Gulyaev, Superplasticity of Steel [in Russian], Metallurgiya, Moscow (1982).Google Scholar
  6. 6.
    A. A. Presnyakov, Localization of Plastic Deformation [in Russian], Metallurgiya, Moscow (1983).Google Scholar
  7. 7.
    F. MacKlintock and A. Argon, Deformation and Failure of Materials [Russian translation], Mir, Moscow (1970).Google Scholar
  8. 8.
    E. I. Bunimovich, A. F. Baiman, N. V. Zhdanov, et al., “Phenomenology of superplastic deformation of aluminum alloys,” in: Structural Mechanism of Plastic Deformation and Phase Transformations [in Russian], Kirg. Univ., Frunze (1985).Google Scholar
  9. 9.
    L. L. Potapova, “Evaluation of alloy superplasticity,” Tekhnol. Legkikh Splavov, No. 2, 60–61 (1982).Google Scholar
  10. 10.
    A. A. Il'yushin, Plasticity. Bases of General Mathematical Theory [in Russian], Izd. Akad. Nauk SSSR, Moscow (1963).Google Scholar
  11. 11.
    G. A. Kuvshinov and I. I. Novikov, “Optimum temperature of superplasticity,” in: Thermal Physics of Condensed Media [in Russian], Nauka, Moscow (1985).Google Scholar
  12. 12.
    A. S. Degtyareva, “Features of eutectoid decomposition in the aluminum-zinc system,” Author's Abstract of Candidate's Disserttion in Technical Sciences, Leningrad (1987).Google Scholar
  13. 13.
    Ya. I. Rudaev, “Temperature-rate conditions for the start of superplasticity,” Third All-Union Sci. Tech. Conf. ‘Superplasticity of metals’ (Tula, Nov. 1986), Proc., Tula (1986).Google Scholar
  14. 14.
    A. A. Presnyakov, “Nature of superplastic flow,” Third All-Union Sci. Tech. Conf. ‘Superplasticity of Metals’ (Tula, Nov. 1986), Proc., (Tula,(1986).Google Scholar
  15. 15.
    V. A. Likhachev, M. M. Myshlyaev, and O. N. Sen'kov, “Role of structural transformations in superplasticity,” Fiz. Met. Metalloved.,63, No. 5, 1045–1050 (1987).Google Scholar
  16. 16.
    A. I. Smirnov, “Real phase transitions and principles for describing them,” in: Systems of Special Temperature Points for Solids [in Russian], Nauka, Moscow (1986).Google Scholar
  17. 17.
    R. K. Aubakirova, A. A. Prenyakov, S. S. Ushkov, and A. N. Baidel'dikova, Superplasticity of Some Titanium Alloys [in Russian], Nauka, Alma-Ata (1987).Google Scholar
  18. 18.
    O. M. Smirnov, Treatment of Metals Under Pressure in a Superplastic Condition [in Russian], Mashinostroenie, Moscow (1979).Google Scholar
  19. 19.
    I. I. Novikov and V. K. Portnoi, Superplasticity of Alloys with an Ultrafine Grain Size [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  20. 20.
    G. I. Barenblatt, “Comments on the discrete nature of failure,” Probl. Prochn., No. 2, 107–111 (1982).Google Scholar
  21. 21.
    A. A. Presnyakov and R. K. Aubakirova, “Rate sensitivity of flow stresses in tension,” Fiz. Met. Metalloved.,60, No. 1, 205–207 (1985).Google Scholar
  22. 22.
    Yu. N. Rabotnov, Deformed Solid Mechanics [in Russian], Nauka, Moscow (1989).Google Scholar
  23. 23.
    E. W. Hart, C. Y. Li, and H. Yamada, “Phenomenological theory — a guide to constitutive relations and fundamental deformation properties,” in: Constitutive Equations in Plasticity, MIT, Cambridge (1976).Google Scholar
  24. 24.
    Yu. M. Vainblat and N. A. Sharshagin, “Dynamic recrystallization of aluminum alloys,” Tsvet. Metally, No. 2, 67–70 (1984).Google Scholar
  25. 25.
    D. Chillingworth, “Structural stability of mathematical models. Importance of catastrophy theory methods,” in: Mathematical Modelling [in Russian], Mir, Moscow (1979).Google Scholar
  26. 26.
    R. Gilmore, Applied Catastrophy Theory, Part 1 [Russian translation], Mir, Moscow (1984).Google Scholar
  27. 27.
    Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry [in Russian], Nauka, Moscow (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Ya. I. Rudaev
    • 1
  1. 1.Polytechnic InstituteFrunze

Personalised recommendations