Advertisement

General Relativity and Gravitation

, Volume 6, Issue 1, pp 75–78 | Cite as

Local isometric embedding of riemannian manifolds with groups of motion

  • Hubert Goenner
Article

Keywords

Manifold Riemannian Manifold Differential Geometry Isometric Embedding Local Isometric Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eisenhart, L.P. (1964).Riemannian Geometry, (Princeton University Press), sections 42,56.Google Scholar
  2. 2.
    Goenner, H. (1973). (Habilitationsschrift), (Göttingen), (unpublished).Google Scholar
  3. 3.
    Rosen, J.In Seminar on the Embedding Problem, (1965).Rev. Mod. Phys.,37, 204.Google Scholar
  4. 4.
    Szekeres, P. (1966).Nuovo Cim. A43, 1062.Google Scholar
  5. 5.
    Misner, C.W. (1963).J. Math. Phys.,4, 924.Google Scholar
  6. 6.
    Dautcourt, G., Papapetrou, A. and Treder, H.J. (1962).Ann. d. Phys.,8, 701.Google Scholar
  7. 7.
    Taub, A.H. (1951).Ann. Math.,53, 472.Google Scholar
  8. 8.
    Gödel, K. (1949).Rev. Mod. Phys.,21, 447.Google Scholar
  9. 9.
    Bonnor, W.B. (1954).Proc. Phys. Soc.,A67, 225–232.Google Scholar
  10. 10.
    Ehlers, J. and Kundt, W. (1964). InGravitation, (ed. Witten, L.), (John Wiley and Sons, New York), pp. 49–101.Google Scholar
  11. 11.
    Newman, E., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, E. (1965).J. Math. Phys.,6, 918.Google Scholar
  12. 12.
    Kasner, E. (1921).Amer. Math. J.,43, 126; Schouten and Struik, (1921).Amer. Math. J.,43, 213.Google Scholar
  13. 13.
    Eiesland, J. (1925).Trans. Amer. Math. Soc.,27, 213.Google Scholar
  14. 14.
    Collinson, C.D. (1968).J. Math. Phys.,9, 403.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1975

Authors and Affiliations

  • Hubert Goenner
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of GöttingenDeutschland

Personalised recommendations