General Relativity and Gravitation

, Volume 13, Issue 1, pp 43–55 | Cite as

Scalar-tetrad theories of gravity

  • John Hayward
Research Articles


A general theory of gravitation is constructed using a tetrad and a scalar field. The resulting theory, called a scalar-tetrad theory, does not contain Einstein's or the Brans-Dicke theories as special cases. However, there is a range of scalar-tetrad theories with the same post-Newtonian limit as Einstein's theory. Two particular models are interesting because of their simplicity.


General Theory Scalar Field Differential Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brans, C. H., and Dicke, R. H. (1961).Phys. Rev.,124, 925.Google Scholar
  2. 2.
    Dicke, R. H. (1965).The Theoretical Significance of Experimental Relativity (Gordon and Breach, New York).Google Scholar
  3. 3.
    Bergmann, P. G. (1968).Int. J. Theor. Phys.,1, 25.Google Scholar
  4. 4.
    Wagoner, R. V. (1970).Phys. Rev. D,1, 3209.Google Scholar
  5. 5.
    Nordvedt, K., Jr. (1970).Astrophys. J.,161, 1059.Google Scholar
  6. 6.
    Ni, W.-T. (1972).Astrophys. J.,176, 769.Google Scholar
  7. 7.
    Cho, Y. M. (1976).Phys. Rev. D,14, 2521.Google Scholar
  8. 8.
    Hayward, J. (1979).Phys. Rev. D,20, 3039.Google Scholar
  9. 9.
    Will, C. M., and Nordvedt, K., Jr. (1972).Astrophys. J.,177, 757.Google Scholar
  10. 10.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1972).Gravitation (Freeman, San Francisco).Google Scholar
  11. 11.
    Chandrasekhar, S. (1965).Astrophys. J.,142, 1488.Google Scholar
  12. 12.
    Will, C. M. (1971).Astrophys. J.,163, 611.Google Scholar
  13. 13.
    Thorne, K. S., Lee, D. L., and Lightman, A. P., (1973).Phys. Rev. D,7, 3563.Google Scholar
  14. 14.
    Reasenberg, R. D., Shapiro, I. I., MacNeil, P. E., Goldstein, R. B., Breidenthal, J. C., Brenkle, J. P., Cain, D. L., Kaufmann, T. M., Komarek, T. A., and Zygielbaum, A. I. (1979).Astrophys. J.,239, 2219.Google Scholar
  15. 15.
    Will, C. M. (1977).Astrophys. J.,214, 826.Google Scholar
  16. 16.
    Hehl, F. W., Nitch, J., and Von der Hyde, P. (1980).General Relativity and Gravitation, eds. Held, A., and Bergmann, P. (Plenum, New York).Google Scholar
  17. 17.
    Nitch, J., and Hehl, F. W. (1980). Preprint, to appear inPhys. Lett. B. Google Scholar
  18. 18.
    MacDowell, S. W., and Mansouri, F. (1977).Phys. Rev. Lett.,38, 739.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • John Hayward
    • 1
  1. 1.Department of Applied MathematicsQueen Mary CollegeLondon

Personalised recommendations