General Relativity and Gravitation

, Volume 7, Issue 5, pp 459–473 | Cite as

The radiation of rotating magnetic dipoles in vacuo in general relativity

  • Joachim Pfarr
Research Articles


An approximate solution of Maxwell's equations for the rotating oblique magnetic dipole is given on the geometrical background of the Schwarzschild metric. The energy radiation is calculated for both the case of the Schwarzschild geometry and the linearized Kerr metric on the basis of the Newman-Penrose formalism. It is shown that general relativistic effects are not sufficient to explain by themselves the experimentally measured slowdown laws of realistic pulsars.


Radiation General Relativity Approximate Solution Relativistic Effect Differential Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boynton, P. E., Groth, E. J., Hutchinson, D. P., Nanos, G. P., Partridge, R. B., and Wilkinson, D. T. (1972).Astrophys. J.,175, 217; Groth, E. J. (1975). Timing of the Grab Pulsar II + III, Princeton Reprints (submitted toAstrophys. J.); Ruderman, M. (1972).Annu. Rev. Astro. Astrophys.,10, 427.Google Scholar
  2. 2.
    Deutsch, A. J. (1957).Ann. Astrophys.,18, 177.Google Scholar
  3. 3.
    Cohen, J. M., and Toton, E. T. (1974).Ann. Phys. N.Y.,87, 244.Google Scholar
  4. 4.
    Penrose, R. (1960).Ann. Phys. N.Y.,10, 171.Google Scholar
  5. 5.
    Newman, E., Penrose, R. (1962).J. Math. Phys.,3, 566.Google Scholar
  6. 6.
    Newman, E., and Penrose, R. (1966).J. Math. Phys.,7, 863.Google Scholar
  7. 7.
    Jackson, J. D.Classical Electrodynamics. New York, 1962.Google Scholar
  8. 8.
    Price, P. H. (1972).Phys. Rev. D,5, 2439.Google Scholar
  9. 9.
    Teukolsky, S. A. (1972).Phys. Rev. Lett.,29, 1114.Google Scholar
  10. 10.
    Flammer, C.Spheroidal Wave Functions. Stanford, 1957.Google Scholar
  11. 11.
    Ginzburg, V. L., and Ozernoi, L. M. (1965).Sov. Phys. JETP,20, 689.Google Scholar
  12. 12.
    Grewing, M., and Heintzmann, H. (1972).Z. Phys.,250, 254.Google Scholar
  13. 13.
    Anderson, J. L., and Cohen, J. M. (1970).Astrophys. Space Sci.,9, 146.Google Scholar
  14. 14.
    Wald, R. M. (1972).Phys. Rev. D,6, 1476.Google Scholar
  15. 15.
    Kinnersley, W. (1969).J. Math. Phys.,10, 1195.Google Scholar
  16. 16.
    Whittaker, E. T. (1927).Proc. Roy. Soc. London Ser. A,116, 720.Google Scholar
  17. 17.
    Thorne, K. S. (1969). Varenna Lectures, p. 237.Google Scholar
  18. 18.
    Cohen, J. M., and Kegeles, L. S. (1974).Phys. Rev. D,10, 1070.Google Scholar
  19. 19.
    Teukolsky, S. A. (1973).Astrophys. J.,185, 635.Google Scholar
  20. 20.
    Press, W. H., and Teukolsky, S. A. (1973).Astrophys. J.,185, 649.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Joachim Pfarr
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations