Advertisement

Catalysis Letters

, Volume 1, Issue 5, pp 127–131 | Cite as

The role of the carbonaceous overlayer in the competitive hydrogenation of cyclopropanes and olefins

  • István Pálinkó
  • Ferenc Notheisz
  • Mihály Bartók
Article

Abstract

In the competitive hydrogenation of olefin-cyclopropane mixtures (2-Me-2-butene + 1,1-diMe-cyclopropane and 2,4-diMe-2-pentene + 1,1,2,2-tetraMe-cyclopropane) over silica supported Pt, Pd and Rh catalysts at 318 K and 373 K, only the olefin is hydrogenated. The other component does not react even after the complete hydrogenation of the olefin. The olefin creates a hydrogen-rich carbonaceous overlayer which is the active phase for its hydrogenation but it is a permanent poison for the hydrogenative ring opening of the cyclopropane ring. On Ni/SiO2 at 473 K, however, such an overlayer does not form and both reactants transform in parallel in a complex way.

Keywords

Hydrogenation Physical Chemistry Catalysis Active Phase Cyclopropane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.B. Maxted, Advan. Catal. Relat. Subj. 3 (1951) 129.Google Scholar
  2. [2]
    R.W. Shortridge, R.A. Craig, K.W. Greenle, J.M. Derfer and C.E. Boord, J. Amer. Chem. Soc. 70 (1948) 946.Google Scholar
  3. [3]
    R.G. Kelso, K.W. Greenlee, J.M. Derfer and C.E. Boord, J. Amer. Chem. Soc. 77 (1955) 1751.Google Scholar
  4. [4]
    F. Notheisz and M. Bartók, J. Catal. 71 (1981) 331.Google Scholar
  5. [5]
    M. Bartók, F. Notheisz, Á.G. Zsigmond and G.V. Smith, J. Catal. 100 (1986) 39.Google Scholar
  6. [6]
    M. Polanyi and J. Horiuti, Trans. Faraday Soc. 30 (1934) 1164.Google Scholar
  7. [7]
    R.S. Hansen, J.R. Arthur, Jr., V.J. Mineault and R.R. Rye, J. Phys. Chem. 70 (1966) 2787.Google Scholar
  8. [8]
    N.C. Gardner and R.S. Hansen, J. Phys. Chem. 74 (1970) 3298.Google Scholar
  9. [9]
    S.J. Thomson and G. Webb, J. Chem. Soc., Chem. Commun. (1976) 526.Google Scholar
  10. [10]
    A.S. Al-Ammar and G. Webb, J. Chem. Soc., Faraday 1 74 (1978) 195.Google Scholar
  11. [11]
    A.S. Al-Ammar and G. Webb, J. Chem. Soc., Faraday 1 74 (1978) 657.Google Scholar
  12. [12]
    A.S. Al-Ammar and G. Webb, J. Chem. Soc., Faraday 1 75 (1978) 1900.Google Scholar
  13. [13]
    G.A. Somorjai,Chemistry in Two Dimensions: Surfaces (Cornell University Press, Ithaca, N.Y., 1981).Google Scholar
  14. [14]
    G.A. Somorjai, in:Proc. 8th Int. Congr. Catal., (West)Berlin, 1984, Vol. I, (1984) 113, and refs. 22-33.Google Scholar
  15. [15]
    D.W. Blakely, E. Kozak, B.A. Sexton and G.A. Somorjai, J. Vac. Sci. Technol. 13 (1976) 1901;Google Scholar
  16. [15]a
    A.L. Cabrera, N.D. Spencer, E. Kozak, P.W. Davies and G.A. Somorjai, Rev. Sci. Instru. 53 (1982) 1888.Google Scholar
  17. [16]
    S.M. Davis and G.A. Somorjai, J. Catal. 65 (1980) 78.Google Scholar
  18. [17]
    E. Segal, R.J. Madon and M. Boudart, J. Catal. 52 (1978) 45.Google Scholar
  19. [18]
    R.J. Madon, J.P. O'Connel and M. Boudart, AIChE J. 24 (1978) 904.Google Scholar
  20. [19]
    C. Minot, M.A. Van Hove and G.A. Somorjai, Surf. Sci. 127 (1982) 441;Google Scholar
  21. [19] a
    R.J. Koestner, M.A. Van Hove and G.A. Somorjai, J. Phys. Chem. 87 (1983) 203.Google Scholar
  22. [20]
    F. Zaera and G.A. Somorjai, J. Amer. Chem. Soc. 106 (1984) 2288.Google Scholar
  23. [21]
    B.A. Morrow and N. Sheppard, Proc. R. Soc. London Ser. A 311 (1969) 391.Google Scholar
  24. [22]
    J.D. Prentice, A. Lesiunas and N. Sheppard, J. Chem. Soc., Chem. Commun. 76 (1976).Google Scholar
  25. [23]
    Y. Soma, J. Catal. 59 (1979) 239.Google Scholar
  26. [24]
    T.P. Beebe and J.T. Yates, Jr., J. Phys. Chem. 91 (1987) 254.Google Scholar
  27. [25]
    P.-K. Wang, C.P. Slichter and J.H. Sinfelt, J. Phys. Chem. 89 (1985) 3060.Google Scholar
  28. [26]
    I.D. Gay, J. Catal. 108 (1987) 15.Google Scholar
  29. [27]
    T. Hattori and R.L. Burwell, Jr., J. Phys. Chem. 83 (1979) 241.Google Scholar
  30. [28]
    P.H. Otero-Schipper, W.A. Wachter, J.B. Butt, R.L. Burwell, Jr. and J.B. Cohen, J. Catal. 50 (1977) 494;Google Scholar
  31. [28] a
    T. Hattori and R.L. Burwell, Jr., J. Chem. Soc., Chem. Commun. 127 (1978);Google Scholar
  32. [28] b
    P.H. Otero-Schipper, W.A. Wachter, J.B. Butt, R.L. Burwell, Jr. and J.B. Cohen, J. Catal. 53 (1978) 414;Google Scholar
  33. [28] c
    S.S. Wong, P.H. Otero-Schipper, W.A. Wachter, Y. Inoue, M. Kobayashi, J.B. Butt, R.L. Burwell, Jr. and J.B. Cohen, J. Catal. 64 (1980) 84;Google Scholar
  34. [28] d
    R. Pitchai, S.S. Wong, N. Takahashi, J.B. Butt, R.L. Burwell, Jr. and J.B. Cohen, J. Catal. 94 (1985) 478;Google Scholar
  35. [28] e
    Z. Karpinski, T.-K. Chuang, H. Katsuzawa, J.B. Butt, R.L. Burwell and J.B. Cohen, J. Catal. 99 (1986) 184.Google Scholar
  36. [29]
    F. Zaera, D. Godbey and G.A. Somorjai, J. Catal. 101 (1986) 73;Google Scholar
  37. [29] a
    F. Zaera, A. J. Gellman and G.A. Somorjai, Acc. Chem. Res. 19 (1986) 24.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1988

Authors and Affiliations

  • István Pálinkó
    • 1
  • Ferenc Notheisz
    • 1
  • Mihály Bartók
    • 1
  1. 1.Department of Organic ChemistryAttila József UniversitySzegedHungary

Personalised recommendations