Catalysis Letters

, Volume 1, Issue 1–3, pp 73–79 | Cite as

The electrochemical reduction of CO2 to CH4 and C2H4 at Cu/Nafion electrodes (solid polymer electrolyte structures)

  • David W. Dewulf
  • Allen J. Bard
Editorial Introduction

Abstract

The construction of copper/Nafion electrodes (solid polymer electrolyte structures) by an electroless plating method is described. These electrodes were used for the gas phase electrochemical reduction of CO2 to hydrocarbon products, including CH4 and C2H4. The faradaic efficiencies of the electrodes under ambient conditions with a counter solution of 1 mM H2SO4 at a potential of −2.00 V vs. SCE reached a steady-state value of about 20% after 30 min of electrolysis. This corresponded to a rate of total hydrocarbon production of approximately 9.8×10−7 mole h−1 cm−2. Increasing the potential of the electrode to more negative potentials, or increasing the proton concentration of the counter solution, caused a decrease in the faradaic efficiencies due to a relative increase in the rate of proton reduction vs. that of CO2 reduction. If the proton concentration of the counter solution was decreased to an alkaline pH, hydrocarbon production quickly ceased because of proton starvation.

Keywords

Hydrocarbon H2SO4 C2H4 Ambient Condition Relative Increase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Registered trademark of E.I. DuPont de Nemours, Inc., Wilmington, DE.Google Scholar
  2. [2]
    L.E. Cratty and W.W. Russell, J. Am. Chem. Soc. 80 (1958) 767.Google Scholar
  3. [3]
    M. Araki and V. Ponec, J. Catal. 44 (1976) 439.Google Scholar
  4. [4]
    K. Klier, V. Chatikavanij, R.G. Herman and G.W. Simmons, J. Catal. 74 (1982) 343.Google Scholar
  5. [5]
    G.A. Mills and F.W. Steffgen, Catal. Rev. 8 (1973) 159.Google Scholar
  6. [6]
    J. Barrault, C. Forquy, J.C. Menezo and R. Maurel, React. Kinet. Catal. Lett. 17 (1981) 373.Google Scholar
  7. [7]
    I. Willner, R. Maidan, D. Mandler, H. Durr, G. Dorr and K. Zengerle, J. Am. Chem. Soc. 109 (1987) 6080.Google Scholar
  8. [8] a)
    Y. Hori, K. Kikuchi and S. Suzuki, Chem. Lett. (1985) 1695;Google Scholar
  9. [8] b)
    Y. Hori, K. Kikuchi, A. Murata and S. Suzuki, Chem. Lett. (1986) 897.Google Scholar
  10. [9]
    K.W. Frese, D.P. Summers and J.J. Kim, private communication.Google Scholar
  11. [10]
    D.W. DeWulf and A.J. Bard, unpublished results.Google Scholar
  12. [11] a)
    R.L. Cook, R.C. MacDuff and A.F. Sammells, J. Electrochem. Soc. 134 (1987) 1873.Google Scholar
  13. [11] b)
    R.L. Cook, R.C. MacDuff and A.F. Sammells, J. Electrochem. Soc. 134 (1987) 2375.Google Scholar
  14. [12]
    D.W. DeWulf and A.J. Bard, submitted to J. Electrochem. Soc.Google Scholar
  15. [13]
    C. Ogden and D. Tench, J. Electrochem. Soc. 128 (1981) 539.Google Scholar
  16. [14]
    A. Aramata and R. Ohnishi, J. Electroanal. Chem. 162 (1984) 153.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1988

Authors and Affiliations

  • David W. Dewulf
    • 1
  • Allen J. Bard
    • 1
  1. 1.Department of ChemistryUniversity of Texas at AustinAustinUSA

Personalised recommendations