Skip to main content
Log in

Effect of cobalt oxide on surface structure of alumina supported molybdena catalysts studied by in situ Raman spectroscopy

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A set of Co promoted 10% Mo/Al2O3 samples have been characterized by means of Raman spectroscopy under ambient as well as in situ dehydrated conditions. Under ambient conditions, the degree of the polymerization of surface molybdenum oxide species decreases with increasing Co loading. Under dehydrated conditions, the polymeric molybdenum oxide species is absent with the addition of only 0.2% Co. At low Co loadings (⩽2%), before the formation of CoMoO4 compound, the spectral features are very similar under ambient conditions. Dehydration causes the upward shift of the Mo=O symmetric stretching mode. A broad band around 920–930 cm−1 was thus observed. This band has been suggested to be associated with the Co-Mo interaction species. In contrast to crystalline CoMoO4, this species shows a reversibility on H2 reduction-O2 reoxidation treatments. From the results obtained, it is proposed that cobalt oxide interacts with the most polymerized molybdenum oxide species to form Co-Mo interaction species and/or crystalline CoMoO4; therefore, the amount of the surface molybdenum oxide species decreases with a change in the molecular structure as a function of the Co concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.R. Brown, L.E. Makovsky and K.H. Rhee, J. Catal. 50 (1977) 162.

    Google Scholar 

  2. J. Medema, C. van Stam, V.H.J. de Beer, A.T.A. Konings and D.C. Koningsberger, J. Catal. 53 (1978) 386.

    Google Scholar 

  3. H. Jeziorowski and H. Knözinger, J. Phys. Chem. 83 (1979) 1166.

    Google Scholar 

  4. D.S. Zingg, L.E. Makovsky, R.E. Tischer, F.R. Brown and D.M. Hercules, J. Phys. Chem. 84 (1980) 2898.

    Google Scholar 

  5. B. Sombret, P. Dhamelincourt, F. Wallart, A.C. Muller, M. Bouquet and J. Grosmangin, J. Raman Spectry. 9 (1980) 291.

    Google Scholar 

  6. L. Salvatti, L.E. Makovsky, J.M. Stencel, F.R. Brow and D.M. Hercules, J. Phys. Chem. 85 (1980) 3700.

    Google Scholar 

  7. L. Wang and W.K. Hall, J. Catal. 66 (1980) 251.

    Google Scholar 

  8. C.H. Chang and S.S. Chan, J. Catal. 72 (1981) 139.

    Google Scholar 

  9. G.L. Sahrader and C.P. Cheng, J. Catal. 80 (1983) 369.

    Google Scholar 

  10. J.M. Stencel, L.E. Makovsky, T.A. Sarkus, J. De Vries, R. Thomas and J.A. Moulijn, J. Catal. 90 (1984) 314.

    Google Scholar 

  11. E. Payen, S. Kasztelan, J. Grimblot and J.P. Bonnell, J. Raman Spectry. 17 (1986) 273.

    Google Scholar 

  12. E. Payen, S. Kasztelan, J. Grimblot and J.P. Bonnell, J. Mol. Struct. 143 (1986) 259.

    Google Scholar 

  13. T. Machej, J. Haber, A.M. Turek and I.E. Wachs, Appl. Catal. 70 (1991) 115.

    Google Scholar 

  14. M. A. Vuurman and I.E. Wachs, J. Phys. Chem. 96 (1992) 5008.

    Google Scholar 

  15. B. Delmon, in:Proc. Climax 3rd Int. Conf. on Chemistry and Uses of Molybdenum, eds. H.F. Barry and P.C.H. Mitchell (Climax Molybdenum Comp., Ann Arbor, 1979) p. 73.

    Google Scholar 

  16. B.S. Clausen, B. Lengeler and H. Topsøe, Polyhedron 5 (1986) 199.

    Google Scholar 

  17. S. Kasztelan, E. Payen, H. Touhoat, J. Grimblot and J.P. Bonnelle, Polyhedron 5 (1986) 157.

    Google Scholar 

  18. S. Kasztelan, J. Grimblot, J.P. Bonnelle, E. Payen, H. Toulhoat and Y. Jacquin, Appl. Catal. 7 (1983) 191.

    Google Scholar 

  19. F.J. Gil, A.M. Escudey Castro, A. Lopez Agudo and J.L.G. Fierro, J. Catal. 90 (1984) 323.

    Google Scholar 

  20. C.V. Caceres, J.L.G. Fierro, A.L. Agudo, M.N. Blanco and H.J. Thomas, J. Catal. 95 (1985) 501.

    Google Scholar 

  21. L.E. Makovsky, J.M. Stencel, F.R. Brown, R.E. Tischer and S.S. Pollack, J. Catal. 89 (1984) 334.

    Google Scholar 

  22. K.Y.S. Ng and E. Gulari, J. Phys. Chem. 89 (1985) 2479.

    Google Scholar 

  23. L. Wang and W.K. Hall, J. Catal. 77 (1982) 232.

    Google Scholar 

  24. D.S. Kim, K. Segawa, T. Soeya and I.E. Wachs, J. Catal. 136 (1992) 539.

    Google Scholar 

  25. E. Payen, J. Grimblot and S. Kasztelan, J. Phys. Chem. 91 (1987) 6642.

    Google Scholar 

  26. F.D. Hardcastle and I.E. Wachs, J. Raman Spectry. 21 (1990) 683.

    Google Scholar 

  27. M. de Boer, A.J. van Dillen, D.C. Koningsberger, J.W. Geus, M.A. Vuurman and I.E. Wachs, Catal. Lett. 11 (1991) 227.

    Google Scholar 

  28. E. Payen, J. Barbillat, J. Grimblot and J.P. Bonnelle, Spectrosc. Lett. 11 (1978) 997.

    Google Scholar 

  29. C.C. Williams, J.G. Ekerdt, J.M. Jeng, F.D. Hardcastle and I.E. Wachs, J. Phys. Chem. 95 (1991) 8791.

    Google Scholar 

  30. G. Deo and I.E. Wachs, J. Phys. Chem. 95 (1991) 5889.

    Google Scholar 

  31. G.A. Park, Chem. Rev. 65 (1965) 177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Xin, Q. Effect of cobalt oxide on surface structure of alumina supported molybdena catalysts studied by in situ Raman spectroscopy. Catal Lett 18, 409–418 (1993). https://doi.org/10.1007/BF00765287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00765287

Keywords

Navigation