Advertisement

Catalysis Letters

, Volume 5, Issue 4–6, pp 385–394 | Cite as

Hydrogenation of CO2, acetone, and CO on a Rh foil promoted by titania overlayers

  • K. J. Williams
  • A. B. Boffa
  • J. Lahtinen
  • M. Salmeron
  • A. T. Bell
  • G. A. Somorjai
Article

Abstract

The effects of submonolayer deposits of titania on the hydrogenation of CO2, acetone, and CO on a Rh foil have been investigated. Titania has been found to promote all three of the hydrogenation reactions, with each reaction exhibiting a maximum rate at a titania coverage of 0.5 ML. The maximum rate for CO2 hydrogenation is 15 times that of the bare Rh surface. Acetone hydrogenation shows a 6-fold rate enhancement, while CO displays a 3-fold increase. Changes in the selectivities for each reaction are also observed upon titania promotion. The effects of titania on these reactions are attributed to an interaction between C-O bonds and Ti3+ ions located at the perimeter of titania islands.

Titania promoted rhodium CO2 hydrogenation acetone hydrogenation CO hydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.M. Schwab and H. Schultes, Z. Phys. Chem., Abt. B 9 (1930) 265.Google Scholar
  2. [2]
    S.J. Tauster, Acc. Chem. Res. 20 (1987) 389.Google Scholar
  3. [3]
    A.T. Bell, Supports and metalsupport interaction in catalyst design, in:Catalyst Design Progress and Perspectives, ed. L.L. Hegedus (Wiley, New York, 1987).Google Scholar
  4. [4]
    G.L. Haller and D.E. Resasco, Adv. Catal. 36 (1989) 173.Google Scholar
  5. [5]
    V. RivesArnau and G. Munuera, Appl. Surf. Sci. 6 (1980) 122.Google Scholar
  6. [6]
    R. Nakamura, S. Nakai, K. Sugiyama and E. Echigoya, Bull. Chem. Soc. Jpn. 54 (1981) 1950.Google Scholar
  7. [7]
    R. Nakamura, K. Yamagami, S. Nishiyama, H. Niiyama and E. Echigoya, Chem. Lett. 2 (1981) 275.Google Scholar
  8. [8]
    N.K. Pande and A.T. Bell, J. Catal. 98 (1986) 7.Google Scholar
  9. [9]
    F. Solymosi, A. Erdöhelyi and T. Bansagi, J. Catal. 68 (1981) 371.Google Scholar
  10. [10]
    M.A. Henderson and S.D. Worley, J. Phys. Chem. 89 (1985) 1417.Google Scholar
  11. [11]
    B. Sen and M.A. Vannice, J. Catal. 113 (1988) 52.Google Scholar
  12. [12]
    Y.-W. Chung, G. Xiong and C.C. Kao, J. Catal. 85 (1984) 237.Google Scholar
  13. [13]
    R.A. Demmin, C.S. Ko and R.J. Gorte, J. Phys. Chem. 89 (1985) 1151.Google Scholar
  14. [14]
    R.A. Demmin and R.J. Gorte, J. Catal. 98 (1986) 577.Google Scholar
  15. [15]
    M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, J. Catal. 106 (1987) 401.Google Scholar
  16. [16]
    M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, J. Chem. Soc. Faraday Trans, 1, 83 (1987) 2061.Google Scholar
  17. [17]
    R.A. Demmin and R.J. Gorte, J. Catal. 105 (1987) 373.Google Scholar
  18. [18]
    K.J. Williams, M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, Catal. Lett. 1 (1988) 331.Google Scholar
  19. [19]
    M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, Surf. Sci. 169 (1986) 123.Google Scholar
  20. [20]
    K.J. Williams, M. Salmeron, A.T. Bell and G.A. Somorjai, Surf. Sci. 204 (1988) L745.Google Scholar
  21. [21]
    M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, Surf. Sci. 195 (1988) 429.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1990

Authors and Affiliations

  • K. J. Williams
    • 2
  • A. B. Boffa
    • 1
  • J. Lahtinen
    • 3
  • M. Salmeron
    • 3
  • A. T. Bell
    • 2
  • G. A. Somorjai
    • 1
  1. 1.Center for Advanced Materials, Lawrence Berkeley Laboratory and Departments of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Chemical EngineeringUniversity of CaliforniaBerkeleyUSA
  3. 3.Laboratory of PhysicsHelsinki University of TechnologyEspooFinland

Personalised recommendations