, Volume 215, Issue 3, pp 251–260 | Cite as

Aspects of winter primary production in the upstream section of Saguenay Fjord

  • Raynald Chassé
  • Raynald Côté


From August 1985 to May 1986, experiments on primary production were carried out bi-weekly in the superficial waters (1–10 m) at one representative station (maximum depth of 260 m) located at the head of the Saguenay Fjord. During the winter season (January–March), the microalgal cells are abundant but their productivity is low. At the beginning of the snow-ice cover (January) the cells are mainly concentrated in the ice-cover interface and in the surface waters whereas in February–March, the cells are much more abundant in the ice. Results showed that the physico-chemical conditions are unfavourable for high productivity. The quantity and the quality of light under the ice cover are not the only factors limiting the photosynthetic activity of epontic community. The ice interior and epontic communities during the winter are mostly composed of the two euryhaline speciesAsterionella formosa andTabellaria fenestrata.

Key words

Saguenay Fjord phytoplankton winter primary production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apollonio, S., 1961. The chlorophyll content of Arctic sea-ice. Arctic 14: 197–200.Google Scholar
  2. Apollonio, S., 1965. Chlorophyll in Arctic sea-ice. Arctic 18: 118–122.Google Scholar
  3. Atlas, D. & T. T. Bonnester, 1980. Dependence of mean spectral extinction coefficient of phytoplankton on depth, water color and species. Limnol. Oceanogr. 25: 157–159.Google Scholar
  4. Bunt, J. S. & E. J. F. Wood, 1963. Microalgae and Antarctic sea-ice. Nature 199: 1254–1255.Google Scholar
  5. Cloutier, S. & R. Côté, 1985. Études expérimentales sur la sensibilité du phytoplancton d'eau douce aux variations de salinité dans le fjord du Saguenay (Estuaire du St-Laurent), Canada. Int. Revue ges. Hydrobiol. 70: 187–201.Google Scholar
  6. Côté, R., 1977. Aspects dynamiques de la production primaire dans le Saguenay, fjord subarctique du Québec. Thèse de doctorat, Université Laval, Québec, 194 p.Google Scholar
  7. Côté, R., 1981. Variations saisonnières de la production primaire dans les eaux de surface de la rivière Saguenay. Hydrobiologia 83: 3–10.Google Scholar
  8. Côté, R., 1983. Aspects toxiques du cuivre sur la biomasse et la productivité du phytoplancton de la rivière Saguenay, Québec. Hydrobiologia 98: 85–95.Google Scholar
  9. Côté, R. & G. Lacroix, 1978a. Variabilité à court terme des propriétés physiques, chimiques et biologiques du Saguenay, fjord subarctique du Québec (Canada). Int. Revue ges. Hydrobiol. 63: 25–39.Google Scholar
  10. Côté, R. & G. Lacroix, 1978b. Capacité photosynthétique du phytoplancton de la couche aphotique dans le fjord du Saguenay. Int. Revue ges. Hydrobiol. 68: 223–246.Google Scholar
  11. Côté, R. & G. Lacroix, 1979. Influence de débits élevés et variables d'eau douce sur le régime saisonnier de production primaire d'un fjord subarctique. Oceanologica Acta 3: 299–306.Google Scholar
  12. Demers, S., L. Legendre, J. C. Therriault & R. G. Ingram, 1986. Biological Production at the ice-water ergocline. In J. C. J. Nihoul (ed.), Marine Interfaces Ecohydrodynamics Elsevier 31–44.Google Scholar
  13. Dunbar, M. J. & J. C. Acreman, 1980. Standing crops and species composition of diatoms in sea-ice form Robeson Channel to the gulf of St. Lawrence. Ophelia 19: 61–72.Google Scholar
  14. Gosselin, M., L. Legendre, S. Demers & R. G. Ingram, 1985. Responses of sea-ice microalgae to climatic and fortnightly tidal energy inputs (Manitounuk Sound, Hudson Bay). Can. J. Fish. aquat. Sci. 42: 999–1006.Google Scholar
  15. Gosselin, M., L. Legendre, J. C. Therriault & S. Demers, 1986. Physical control of the horizontal patchiness of sea-ice microalgae. Mar. Ecol. Prog. Ser. 29: 289–298.Google Scholar
  16. Grainger, E. H., 1977. The annual nutrient cycle in sea ice. In: M. J. Dunbar (ed.), Polar Oceans, Proceeding of SCOR/SCAR. Polar Oceans Conference. Montréal, May 1974, Arctic Institute of North America, Calgary, pp. 285–299.Google Scholar
  17. Grant, W. D. & R. A. Horner, 1976. Growth responses to salinity variation in four arctic ice diatoms. J. Phycol. 12: 180–185.Google Scholar
  18. Horner, R. A. & G. C. Schrader, 1982. Relative contributions of ice algae, phytoplankton and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35: 485–503.Google Scholar
  19. Jones, G. H., M. Leclerc, M. Ouellet, L. Potvin, P. Couture, D. Cluis, W. Sochanska & J. Sochanski, 1979. Productivité biologique des eaux du Lac St-Jean. Rapp. Sci. 76. INRS-Eau. Université du Québec, 641 p.Google Scholar
  20. Legendre, L. & S. Demers, 1984. Towards dynamic biological oceanography and limnology. Can. J. Fish aquat. Sci 41: 2–19.Google Scholar
  21. Legendre, L. & S. Demers, 1985. Auxiliary energy, ergoclines and aquatic biological production. Natur. can. 112: 5–14.Google Scholar
  22. Maestrini, S. Y., M. Rochet, L. Legendre & S. Demers, 1986. Nutrient limitation of the bottom-ice microalgal biomass (Southeastern Hudson Bay, Canadian Arctic). Limnol. Oceanogr. 31: 969–982.Google Scholar
  23. Maykil, G. A. & T. C. Greenfell, 1975. The spectral distribution of light beneath first-year sea-ice in the Arctic Ocean. Limnol. Oceanogr. 20: 554–563.Google Scholar
  24. Meguro, H., 1962. Plankton ice in the Antarctic Ocean. Antarct. Record 14: 1192–1199.Google Scholar
  25. Neori, A. & O. Holm-Hansen, 1982. Effect of temperature on rate of photosynthesis in Antarctic phytoplankton. Polar Biol. 1: 33–38.Google Scholar
  26. Poulin, M., A. Cardinal & L. Legendre, 1983. Réponse d'une communauté de diatomées de glace à un gradient de salinité (Baie d'Hudson). Mar. Biol. 76: 191–202.Google Scholar
  27. Steemann-Nielsen, E., 1952. The use of radio-active carbon (14C) for measuring organic production in the sea. J. Cons. Int. Explor. Mer., 18: 117–140.Google Scholar
  28. Steemann-Nielsen, E., 1977. The carbon 14 technique for measuring organic production by plankton algae. A report on the present knowledge. Folia Limnol. Scand. J. 17: 45.Google Scholar
  29. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of sea water analysis. Bull. Fish. Res. Bd Can. 167, 310 p.Google Scholar
  30. Sullivan, C. W. & A. C. Palmisano, 1981. Sea-ice microbial communities in McMurdo Sound. Antarct. J. U.S. 16: 126–127.Google Scholar
  31. Sullivan, C. W., A. C. Palmisano, S. Kottmeir, S. McGrath Grossi & R. Moe, 1985. The influence of light on growth and development on the sea-ice microbial community of McMurdo Sound. Antarctic Nutrient Cycles and Food Webs. In W. R. Siegfried, P. R. Condy & R. M. Laws, (eds), New-York, pp. 78–84.Google Scholar
  32. Therriault, J. C. & G. Lacroix, 1975. Penetration of deep layer of the Saguenay fjord by surface waters of the St. Lawrence estuary. J. Fish. Res. Bd Can. 32: 2373–2377.Google Scholar
  33. Therriault, J. C. & G. Lacroix, 1976. Nutrients chlorophyll and internal tides in the St. Lawrence Estuary. J. Fish. Res. Bd Can. 33: 2747–2757.Google Scholar
  34. Thompson, P. A. & R. Côté, 1985. Influence de la spéciation du cuivre sur les populations phytoplanctoniques naturelles de la riviè du Saguenay, Québec, Canada. Int. Revue ges. Hydrobiol. 70: 711–731.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Raynald Chassé
    • 1
  • Raynald Côté
    • 2
  1. 1.INRS-EauSainte-FoyCanada
  2. 2.Département des sciences fondamentalesUniversité du Québec a ChicoutimiChicoutimiCanada

Personalised recommendations