, Volume 215, Issue 3, pp 215–221 | Cite as

Sediment oxygen demand in man-made Lake Ton-Ton (Uruguay)

  • Ruben Sommaruga


A study on sediment metabolism was carried out during 1986 in Lake Ton-Ton, Uruguay. Sediment oxygen demand (SOD) from chemical and biological origin was measured in undisturbed sediment cores taken from the deepest part of the lake. Mean SOD rate for the study period (51.56 mgO2 m−2 h−1) corresponded well with the eutrophic state of the lake. During stratification, SOD from chemical origin accounted for 69–87% of total SOD, while SOD from biological origin was dominating for the rest of the year, except in July. Biological respiration was principally of microbial origin. Hypolimnetic temperature was the main factor controlling SOD rates (r = 0.771,p < 0.001). Nevertheless, freshly sedimented phytodetritus from anAnabaena bloom, together with a renewed input of oxygen to bottom water were responsible for the maximum SOD values, recorded at the beginning of a mixing period in April (72.51 mgO2 m−2 H−1).

Key words

sediment metabolism biological and chemical oxygen demand eutrophic lake Uruguay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, K. & P. M. Jónasson, 1965. Oxygen consumption of profundal lake animals at low oxygen content of the water. Hydrobiologia 26: 131–143.Google Scholar
  2. Bowman, G. T. & J. J. Delfino, 1980. Sediment oxygen demand techniques: a review and comparison of laboratory andin situ systems. Wat. Res. 14: 491–499.Google Scholar
  3. Douglas, D. J., & S. O'Brien, 1987. A simple laboratory method for benthal oxygen demand. Ann. Limnol. 23: 263–267.Google Scholar
  4. Edberg, N., 1977. The role of sediments with regard to lake oxygen consumption. In H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr W. Junk, The Hague: 265.Google Scholar
  5. Gaudette, H., W. Flight, L. Tomer & D. Folger, 1974. An inexpensive titration method for the determination of organic carbon in recent sediments. J. Sed. Petrol. 44: 249–253.Google Scholar
  6. Granéli, W., 1978. Sediment oxygen uptake in south Swedish lakes. Oikos 30: 7–16.Google Scholar
  7. Gunnison, D. & M. Alexander, 1975. Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnol. Oceanogr. 20: 64–70.Google Scholar
  8. Håkanson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer Verlag, N.Y., 316.Google Scholar
  9. Hargrave, B. T., 1969. Similarity of oxygen uptake by benthic communities. Limnol. Oceanogr. 14: 285–290.Google Scholar
  10. Hargrave, B. T., 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic contents. Limnol. Oceanogr. 17: 583–596.Google Scholar
  11. Hutchinson, G. E., 1957. A treatise on Limnology Vol. I. J. Wiley & Sons, N.Y., 1115.Google Scholar
  12. Johnson, M. G. & R. O. Brinkhurst, 1971. Benthic community metabolism in Bay of Quinte and Lake Ontario. J. Fish. Res. Bd Can. 28: 1715–1725.Google Scholar
  13. Jónasson, P. M., 1972. Ecology and production of the profundal benthos in relation to phytoplankton in Lake Esrom. Oikos 14: 1–148.Google Scholar
  14. Jones, J. G., 1977. The study of aquatic microbial communities. In F. A. Skinner & J.. M. Shewan (eds), Aquatic Microbiology. Academic Press, Lond.: 1–30.Google Scholar
  15. Jones, J. G., 1979. Microbial nitrate reduction in freshwater sediments. J. gen. Microbiol. 115: 27–35.Google Scholar
  16. Jørgensen, B. B., 1983. Process at the sediment-water interface. In B. Bolin & R. B. Book (eds), The major biogeochemical cycles and their interactions. SCOPE Report N° 10: 477–509.Google Scholar
  17. Jørgensen, B. B. & N. P. Revsbech, 1985. Diffusive boundary layers and the oxygen uptake of sediment and detritus. Limnol. Oceanogr. 30: 111–122.Google Scholar
  18. Margalef, R., 1984. Limnología. Omega, Barcelona, 1010.Google Scholar
  19. Naumann, E., 1931. Limnologische Terminologie. Handbuch der biologischen Arbeitsmethoden, Abt. IX, Teil 8. Berlin, Urban & Schwarzenberg.Google Scholar
  20. Newrkla, P., 1982a. Annual cycles of benthic community oxygen uptake in a deep oligotrophic lake (Attersee, Austria). Hydrobiologia 94: 139–147.Google Scholar
  21. Newrkla, P. & A. Gunatilaka, 1982b. Benthic community metabolism of the Austrian pre-alpine lakes of different trophic conditions and its oxygen dependency. Hydrobiologia 92: p531–536.Google Scholar
  22. Newrkla, P., 1983a. Sediment characteristics and benthic community oxygen uptakes rates of Parakrama Samudra. In F. Schiemer (ed.), Limnology of Parakrama Samudra, Sri Lanka Developments in Hydrobiology 11. Dr W. Junk, The Hague: 236.Google Scholar
  23. Newrkla, P., 1983b. Methods for measuring benthic community respiration rates. In E. Gnaiger & H. Forstner (eds), Handbook on polarographic oxygen sensors: Aquatic and physiological applications. Springer-Verlag, Berlin: 274–284.Google Scholar
  24. Niewolak, S., A. Korycka & E. Potocka, 1978. Ammonification processes in fertilized lakes. Ekol. pol. 26: 555–572.Google Scholar
  25. Pamatmat, M. M., 1971. Oxygen consumption by the seabed. Limnol. Oceanogr. 16: 536–550.Google Scholar
  26. Sommaruga, R., 1987a. Dinámica de la interfase agua-sedimento en un sistema eutrófico, Lago Ton-Ton (Canelones, Uruguay). Tesis Univ. de la República Oriental del Uruguay, 99.Google Scholar
  27. Sommaruga, R., 1987b. Variación temporal del número de bacterias amonificadoras herpobénticas en un sistema eutrófico, Lago Ton-Ton. Rev. Cienc. nat. Litoral 18: 123–130.Google Scholar
  28. Teal, J. M. & J. Kanwisher, 1961. Gas exchange in a Georgia salt marsh. Limnol. Oceanogr. 6: 388–399.Google Scholar
  29. ZoBell, C. E., 1946. Studies on redox potential of marine sediments. Bull. am. Ass. Petrol. Geol. 30: 477–513.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Ruben Sommaruga
    • 1
  1. 1.Facultad de Humanidades y Ciencias, Depto. de Hidrobiología, Sección LimnologíaMontevideoUruguay

Personalised recommendations