, Volume 245, Issue 2, pp 75–86 | Cite as

Sediment resuspension effects on alkaline phosphatase activity

  • S. Newman
  • K. R. Reddy


Sediment cores, including the associated lake water, were collected from a shallow hypereutrophic lake located in central Florida. Alkaline phosphatase activity (APA) was measured as an indicator of potential organic P mineralization. In both the sediment and water columns, APA was mainly associated with particulate matter; < 10% of APA was within the soluble phase. This suggests that for enzymatic hydrolysis to occur the hydrolyzable organic compounds must be in close proximity to the particle-bound enzyme complex. Both total P (TP) and APA decreased with depth in the sediment, whereas soluble reactive P increased in the 20–40 cm fraction. Resuspension of surficial sediments resulted in an immediate increase in APA, total suspended solids, TP, total Kjeldahl N, and total organic C within the overlying water column. However, these concentrations decreased rapidly following cessation of turbulence and settling of the sediments, emphasizing the close association of these parameters with the sediment.

Key words

organic phosphorus mineralization suspended solids Lake Apopka 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Public Health Association (APHA), 1985. Standard methods for the examination of water and wastewater. 16th edn. American Public Health Association, Washington, D. C. 1268 pp.Google Scholar
  2. Ayyakkannu, K. & D. Chadramohen, 1971. Occurrence and distribution of phosphate solubilizing bacteria and phosphatase activity in marine sediments and Porto Novo. Mar. Biol. 11: 201–205.Google Scholar
  3. Baligar, V. C., R. J. Wright & M. D. Smedley, 1988. Aced phosphatase activity in soils of the Appalachian Region. Soil Sci. Soc. Am. J. 52: 1612–1616.Google Scholar
  4. Burns, R. G., 1986. Interaction of enzymes with soil mineral and organic colloids. In: P. M. Huang & M. Schnitzer (eds), Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Spec. Publ. no. 17: 429–451.Google Scholar
  5. Coleman, J. E. & P. Gettins, 1983. Alkaline phosphatase, solution, structure, and mechanism. In: A. Meister (ed.), 381–452. Advances in Enzymology Vol. 55. Wiley.Google Scholar
  6. Degobbis, D., E. Homme-Maslowska, A. A. Orio, R. Donazzolo & B. Pavoni, 1984. The role of alkaline phosphatase in the sediments of Venice Lagoon on nutrient regeneration. Estuar. coast. shelf Sci. 22: 425–437.Google Scholar
  7. Dorich, R. A., D. W. Nelson & L. E. Sommers, 1985. Estimating algal available P in suspended sediments by chemical extraction. J. envir. Qual. 14: 400–405.Google Scholar
  8. Gächter, R. & A. Mares, 1985. Does settling seston release soluble reactive phosphorus in the hypolimnion of lakes? Limnol. Oceanogr. 30: 364–371.Google Scholar
  9. Healey, F. P. & L. L. Hendzel, 1979. Fluorometric measurement of alkaline phosphatase activity in algae. Freshwat. Biol. 9: 429–439.Google Scholar
  10. Heath, R. T. & G. D. Cooke, 1975. The significance of alkaline phosphatase in a eutrophic lake. Verh. int. Ver. Limnol. 19: 293–304.Google Scholar
  11. Holdren, G. C., Jr. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact lake sediment cores. Envir. Sci. Technol. 14: 79–87.Google Scholar
  12. Juma, N. G. & M. A. Tabatabai, 1978. Distribution of phosphomonoesterases in soils. Soil Sci. 126: 101–108.Google Scholar
  13. Kobori, H. & N. Taga, 1979. Occurrence and distribution of phosphatase in neritic and oceanic sediments. Deep Sea Res. 26: 799–808.Google Scholar
  14. Lee, G. F., 1970. Factors affecting the transfer of materials between water and sediments. Univ. of Wisconsin. Eutrophication Information Program, Literature Review No. 1. Madison, Wisconsin.Google Scholar
  15. Lee, G. F., W. C. Sonzogni & R. D. Spear, 1977. Significance of oxic vs anoxic conditions for Lake Mendota sediment phosphorus release. In: H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr W. Junk, The Hague: 294–306.Google Scholar
  16. McQueen, D. J., D. R. S. Lean & M. N. Charlton, 1986. The effects of hypolimnetic aeration on iron-phosphorus interactions. Wat. Res. 20: 1129–1135.Google Scholar
  17. Moore, P. M. Jr., K. R. Reddy & D. A. Graetz, 1991. Phosphorus geochemistry in the sediment-water column of a hypereutrophic lake. J. envir. Qual. 20: 869–875.Google Scholar
  18. Newman, S., 1991. Bioavailability of organic phosphorus in a shallow hypereutrophic lake. Ph.D. dissertation, Univ. Florida, Gainesville, Fl. 180 p.Google Scholar
  19. Pettersson, K. & M. Jansson, 1978. Determination of phosphatase activity in lake water — a study of methods. Verh. int. Ver. Limnol. 20: 1226–1230.Google Scholar
  20. Pollman, C. D., 1983. Internal loading in shallow lakes. Ph.D. dissertation, Univ. Florida, Gainesville, Fl. 191 pp.Google Scholar
  21. Pomeroy, L. R., E. E. Smith & C. M. Grant, 1965. The exchange of phosphate between estuarine water and sediments. Limnol. Oceanogr. 10: 167–172.Google Scholar
  22. Pulford, I. D. & M. A. Tabatabai, 1988. Effect of waterlogging on enzyme activities in soils. Soil Biol. Biochem. 20: 215–219.Google Scholar
  23. Reddy, K. R. & M. F. Fisher, 1990. Sediment resuspension effects on phosphorus fluxes across the sediment-water interface: Laboratory microcosm studies. Final Report submitted to the South Florida Water Management District, West Palm Beach, FL.Google Scholar
  24. Reddy, K. R. & D. A. Graetz, 1990. Internal nutrient budget for Lake Apopka. St. Johns River Water Management District. Project no. 15-150-01-SWIM. Palatka, Florida. 125 pp.Google Scholar
  25. Rojo, M. J., S. G. Carcedo & M. P. Mateos, 1990. Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biol. Biochem. 22: 169–174.Google Scholar
  26. Ryding, S-O. & C. Forsberg, 1977. Sediments as a nutrient source in a shallow polluted lake. In: H. L. Golterman (ed.) Interactions between sediments and freshwater. Dr W. Junk, The Hague: 227–234.Google Scholar
  27. Sayler, G. S., M. Puziss & M. Silver, 1979. Alkaline phosphatase assay for freshwater sediments: Application to perturbed sediment systems. Appl. envir. Microbiol. 38: 922–927.Google Scholar
  28. SAS Institute Inc., 1985. SAS user's guide: statistics, SAS Institute Inc., Cary, N.C.Google Scholar
  29. Schindler, D. W., R. Hesslein & G. Kipphur, 1977. Interactions between sediments and overlying waters in an experimentally eutrophied Precambian Shield Lake. In: H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr W. Junk, The Hague: 235–243.Google Scholar
  30. Speir, T. W. & D. J. Ross, 1978. Soil phosphatases and sulphatases. In: R. G. Burns (ed.), Soil Enzymes. Academic Press, New York: 197–249.Google Scholar
  31. Stumm, W. & J. O. Leckie, 1970. Phosphate exchange with sediments; its role in the productivity of surface waters. Fifth Int. Water Polln. Res. Conf. III: 2611–2616.Google Scholar
  32. Tabatabai, M. A. & J. M. Bremner, 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301–307.Google Scholar
  33. Tessenow, U., 1972. Losungs-, Diffusions- und Sorptionsprozesse in der Oberschicht von Seesedimenten. 1. Ein Langzeitexperiment unter aseroben und anaeroben Bedingungen in Fleibgleichgewicht. Arch. Hydrobiol. Suppl. 38: 353–398.Google Scholar
  34. U. S. Environmental Protection Agency (USEPA), 1979. Environmental impact statement. Lake Apopka restoration project. Lake and Orange Counties, Florida. (EPA 904/08–79–043). U. S. Environmental Protection Agency, EMSL, Cincinnati, OH.Google Scholar
  35. Walker, T. W. & A. F. R. Adams, 1958. Organic phosphorus. In: A. L. Page, R. H. Miller & D. R. Keeney (eds), Methods of soil analysis, Part 2: Chemical and microbiological properties. 1982 ASA, SSSA. Madison, WI: 411–413.Google Scholar
  36. Wolanski, E., T. Asaeda & J. Imberger, 1989. Mixing across a lutocline. Limnol. Oceanogr. 34: 931–938.Google Scholar
  37. Young, T. C., J. V. DePinto, S. C. Martin & J. S. Bonner, 1985. Algal available particulate phosphorus in the Great Lakes basin. J. Great Lakes Res. 11: 434–446.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • S. Newman
    • 1
  • K. R. Reddy
    • 1
  1. 1.Institute of Food & Agricultural Sciences, Soil science DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations