Skip to main content
Log in

Sediment resuspension effects on alkaline phosphatase activity

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Sediment cores, including the associated lake water, were collected from a shallow hypereutrophic lake located in central Florida. Alkaline phosphatase activity (APA) was measured as an indicator of potential organic P mineralization. In both the sediment and water columns, APA was mainly associated with particulate matter; < 10% of APA was within the soluble phase. This suggests that for enzymatic hydrolysis to occur the hydrolyzable organic compounds must be in close proximity to the particle-bound enzyme complex. Both total P (TP) and APA decreased with depth in the sediment, whereas soluble reactive P increased in the 20–40 cm fraction. Resuspension of surficial sediments resulted in an immediate increase in APA, total suspended solids, TP, total Kjeldahl N, and total organic C within the overlying water column. However, these concentrations decreased rapidly following cessation of turbulence and settling of the sediments, emphasizing the close association of these parameters with the sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (APHA), 1985. Standard methods for the examination of water and wastewater. 16th edn. American Public Health Association, Washington, D. C. 1268 pp.

    Google Scholar 

  • Ayyakkannu, K. & D. Chadramohen, 1971. Occurrence and distribution of phosphate solubilizing bacteria and phosphatase activity in marine sediments and Porto Novo. Mar. Biol. 11: 201–205.

    Google Scholar 

  • Baligar, V. C., R. J. Wright & M. D. Smedley, 1988. Aced phosphatase activity in soils of the Appalachian Region. Soil Sci. Soc. Am. J. 52: 1612–1616.

    Google Scholar 

  • Burns, R. G., 1986. Interaction of enzymes with soil mineral and organic colloids. In: P. M. Huang & M. Schnitzer (eds), Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Spec. Publ. no. 17: 429–451.

  • Coleman, J. E. & P. Gettins, 1983. Alkaline phosphatase, solution, structure, and mechanism. In: A. Meister (ed.), 381–452. Advances in Enzymology Vol. 55. Wiley.

  • Degobbis, D., E. Homme-Maslowska, A. A. Orio, R. Donazzolo & B. Pavoni, 1984. The role of alkaline phosphatase in the sediments of Venice Lagoon on nutrient regeneration. Estuar. coast. shelf Sci. 22: 425–437.

    Google Scholar 

  • Dorich, R. A., D. W. Nelson & L. E. Sommers, 1985. Estimating algal available P in suspended sediments by chemical extraction. J. envir. Qual. 14: 400–405.

    Google Scholar 

  • Gächter, R. & A. Mares, 1985. Does settling seston release soluble reactive phosphorus in the hypolimnion of lakes? Limnol. Oceanogr. 30: 364–371.

    Google Scholar 

  • Healey, F. P. & L. L. Hendzel, 1979. Fluorometric measurement of alkaline phosphatase activity in algae. Freshwat. Biol. 9: 429–439.

    Google Scholar 

  • Heath, R. T. & G. D. Cooke, 1975. The significance of alkaline phosphatase in a eutrophic lake. Verh. int. Ver. Limnol. 19: 293–304.

    Google Scholar 

  • Holdren, G. C., Jr. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact lake sediment cores. Envir. Sci. Technol. 14: 79–87.

    Google Scholar 

  • Juma, N. G. & M. A. Tabatabai, 1978. Distribution of phosphomonoesterases in soils. Soil Sci. 126: 101–108.

    Google Scholar 

  • Kobori, H. & N. Taga, 1979. Occurrence and distribution of phosphatase in neritic and oceanic sediments. Deep Sea Res. 26: 799–808.

    Google Scholar 

  • Lee, G. F., 1970. Factors affecting the transfer of materials between water and sediments. Univ. of Wisconsin. Eutrophication Information Program, Literature Review No. 1. Madison, Wisconsin.

  • Lee, G. F., W. C. Sonzogni & R. D. Spear, 1977. Significance of oxic vs anoxic conditions for Lake Mendota sediment phosphorus release. In: H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr W. Junk, The Hague: 294–306.

    Google Scholar 

  • McQueen, D. J., D. R. S. Lean & M. N. Charlton, 1986. The effects of hypolimnetic aeration on iron-phosphorus interactions. Wat. Res. 20: 1129–1135.

    Google Scholar 

  • Moore, P. M. Jr., K. R. Reddy & D. A. Graetz, 1991. Phosphorus geochemistry in the sediment-water column of a hypereutrophic lake. J. envir. Qual. 20: 869–875.

    Google Scholar 

  • Newman, S., 1991. Bioavailability of organic phosphorus in a shallow hypereutrophic lake. Ph.D. dissertation, Univ. Florida, Gainesville, Fl. 180 p.

    Google Scholar 

  • Pettersson, K. & M. Jansson, 1978. Determination of phosphatase activity in lake water — a study of methods. Verh. int. Ver. Limnol. 20: 1226–1230.

    Google Scholar 

  • Pollman, C. D., 1983. Internal loading in shallow lakes. Ph.D. dissertation, Univ. Florida, Gainesville, Fl. 191 pp.

    Google Scholar 

  • Pomeroy, L. R., E. E. Smith & C. M. Grant, 1965. The exchange of phosphate between estuarine water and sediments. Limnol. Oceanogr. 10: 167–172.

    Google Scholar 

  • Pulford, I. D. & M. A. Tabatabai, 1988. Effect of waterlogging on enzyme activities in soils. Soil Biol. Biochem. 20: 215–219.

    Google Scholar 

  • Reddy, K. R. & M. F. Fisher, 1990. Sediment resuspension effects on phosphorus fluxes across the sediment-water interface: Laboratory microcosm studies. Final Report submitted to the South Florida Water Management District, West Palm Beach, FL.

  • Reddy, K. R. & D. A. Graetz, 1990. Internal nutrient budget for Lake Apopka. St. Johns River Water Management District. Project no. 15-150-01-SWIM. Palatka, Florida. 125 pp.

  • Rojo, M. J., S. G. Carcedo & M. P. Mateos, 1990. Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biol. Biochem. 22: 169–174.

    Google Scholar 

  • Ryding, S-O. & C. Forsberg, 1977. Sediments as a nutrient source in a shallow polluted lake. In: H. L. Golterman (ed.) Interactions between sediments and freshwater. Dr W. Junk, The Hague: 227–234.

    Google Scholar 

  • Sayler, G. S., M. Puziss & M. Silver, 1979. Alkaline phosphatase assay for freshwater sediments: Application to perturbed sediment systems. Appl. envir. Microbiol. 38: 922–927.

    Google Scholar 

  • SAS Institute Inc., 1985. SAS user's guide: statistics, SAS Institute Inc., Cary, N.C.

    Google Scholar 

  • Schindler, D. W., R. Hesslein & G. Kipphur, 1977. Interactions between sediments and overlying waters in an experimentally eutrophied Precambian Shield Lake. In: H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr W. Junk, The Hague: 235–243.

    Google Scholar 

  • Speir, T. W. & D. J. Ross, 1978. Soil phosphatases and sulphatases. In: R. G. Burns (ed.), Soil Enzymes. Academic Press, New York: 197–249.

    Google Scholar 

  • Stumm, W. & J. O. Leckie, 1970. Phosphate exchange with sediments; its role in the productivity of surface waters. Fifth Int. Water Polln. Res. Conf. III: 2611–2616.

    Google Scholar 

  • Tabatabai, M. A. & J. M. Bremner, 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301–307.

    Google Scholar 

  • Tessenow, U., 1972. Losungs-, Diffusions- und Sorptionsprozesse in der Oberschicht von Seesedimenten. 1. Ein Langzeitexperiment unter aseroben und anaeroben Bedingungen in Fleibgleichgewicht. Arch. Hydrobiol. Suppl. 38: 353–398.

    Google Scholar 

  • U. S. Environmental Protection Agency (USEPA), 1979. Environmental impact statement. Lake Apopka restoration project. Lake and Orange Counties, Florida. (EPA 904/08–79–043). U. S. Environmental Protection Agency, EMSL, Cincinnati, OH.

    Google Scholar 

  • Walker, T. W. & A. F. R. Adams, 1958. Organic phosphorus. In: A. L. Page, R. H. Miller & D. R. Keeney (eds), Methods of soil analysis, Part 2: Chemical and microbiological properties. 1982 ASA, SSSA. Madison, WI: 411–413.

    Google Scholar 

  • Wolanski, E., T. Asaeda & J. Imberger, 1989. Mixing across a lutocline. Limnol. Oceanogr. 34: 931–938.

    Google Scholar 

  • Young, T. C., J. V. DePinto, S. C. Martin & J. S. Bonner, 1985. Algal available particulate phosphorus in the Great Lakes basin. J. Great Lakes Res. 11: 434–446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, S., Reddy, K.R. Sediment resuspension effects on alkaline phosphatase activity. Hydrobiologia 245, 75–86 (1992). https://doi.org/10.1007/BF00764767

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00764767

Key words

Navigation