Skip to main content
Log in

Recent technological developments in Fischer-Tropsch catalysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Fischer-Tropsch Synthesis is a promising, long-term, option for environmentally sound production of chemicals and fuels from coal. This paper focuses on catalyst and process developments which have occurred in the past decade. It features three important areas of FT catalysis: chemical modifications (additives, promoters, supports, pretreatments, and preparation methods), interception of intermediates (dual functionalism and secondary reactions), and limitation of chain growth by shape selectivity. Fundamental principles of catalyst design are emphasized. Conventional FT catalyst/process technology suffers from the following limitations: (1) limited selectivity for premium products (e.g. olefins, gasoline, and diesel fuel), (2) catalyst deactivation, (3) high capital cost, (4) heat removal, and (5) less than optimum thermal efficiency. Significant progress toward the solution of deactivation, heat removal, and thermal efficiency problems has been realized in the past two decades; with these innovations improvements in process economics of 30–40% are realizable. Of perhaps even greater significance is the progress made during the same period in the understanding of the relationship of catalyst structure to activity and selectivity properties which provides a scientific basis for catalyst design. Some of the key recent improvements in FT catalyst, reactor and process technology which could significantly impact the efficiency and economical production of fuels and chemicals from coal and natural gas are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. New Trends in CO Activation, ed. L. Guczi (Elsevier, Amersterdam, 1990).

    Google Scholar 

  2. C.H. Bartholomew, Recent developments in Fischer-catalysis, in:New Trends in CO Activation, ed. L. Guczi (Elsevier, Amersterdam, 1990).

    Google Scholar 

  3. P. Sabatier and J.B. Senderens, C.R. Acad. Sci., Paris 134 (1902) 514.

    Google Scholar 

  4. BASF: German Pat. 293, 787 (1913).

  5. F. Fischer and H. Tropsch, Brennst.-Chem. 4 (1923) 276.

    Google Scholar 

  6. M.E. Dry, in:Catalysis Science and Technology, eds. J.R. Anderson and M. Boudart (Springer-Verlag, New York, 1981) pp. 159–256.

    Google Scholar 

  7. R.B. Anderson,The Fischer-Tropsch Synthesis (Academic Press, New York, 1984).

    Google Scholar 

  8. J. Falbe,New Syntheses with Carbon Monoxide (Springer-Verlag, Berlin, 1980);

    Google Scholar 

  9. C.D. Frohning, H. Koelbel, M. Raleic, W. Rottig, F. Schnur and H. Schulz,Chemical Feedstocks from Coal, ed. J. Falbe (Wiley, 1982) pp. 309–432.

  10. D.L. King, J.A. Cusumano and R.L. Garten, Catal. Rev.-Sci. Eng. 23 (1981) 233;

    Google Scholar 

  11. Technical Limitations of Fischer-Tropsch Synthesis: Implications for New Syngas-based Technologies, Catalytica Associates, Multiclient Study No. 4160 (Oct., 1984).

  12. M.E. Dry and J.C. Hoogendoorn, Catal. Rev.-Sci. Eng. 23 (1981) 265.

    Google Scholar 

  13. J. Haggin, Chem. & Eng. News (Oct. 26, 1981) 22.

    Google Scholar 

  14. H. Klare and M. Pelagalli, Chem. Techn. 33 (8) (1981) 399.

    Google Scholar 

  15. A. Deluzarche, R. Kieffer, J.P. Hindermann, G. Jenner, A. Kiennemann, G. Lefebvre and A. Chauvel, L'actualite chim. (Dec. 1982) 23.

  16. L. Koenig and J. Gaube, Chem.-Ing.-Tech. 55 (1983) 14.

    Google Scholar 

  17. W. Keim, Am. Chem. Soc., Div. of Petr. Chem. Prepr. 31 (1) (1986) 12.

    Google Scholar 

  18. M.E. Dry, Am. Chem. Soc., Div. of Fuel Chem. Prepr. 31(2) (1986) 288.

    Google Scholar 

  19. G.A. Mills, Catalysts for Fuels from Syngas, New Directions for Research, IEACR/09, IEA Coal Research, London (1988).

    Google Scholar 

  20. C.D. Chang, Catal. Rev.-Sci. Eng. 25 (1983) 1.

    Google Scholar 

  21. Y.T. Shah and A.J. Perotta, Ind. Eng. Chem. Prod. Res. & Devel. 15 (1976) 123.

    Google Scholar 

  22. C.H. Bartholomew and R.C. Reuel, Ind. Eng. Chem. Prod. Res. & Devel. 24 (1985) 56.

    Google Scholar 

  23. C.H. Bartholomew, Ann. Tech. Rept. to DOE/PETC, DOE-PC-90533-8, Jan. 25, 1989.

  24. C.S. Kellner and A.T. Bell, J Catal. 70 (1981) 418.

    Google Scholar 

  25. C.H. Bartholomew and M.D. Patil, paper in preparation, 1990.

  26. J. Venter, M. Kaminisky, G.L. Geoffroy and M.A. Vannice, J. Catal. 103 (1987) 450–465.

    Google Scholar 

  27. I.R. Leith,Proc. 9th Int. Cong. Catal., Calgary, 1988, Vol. 2, p. 658.

    Google Scholar 

  28. J. Barrault, C. Renar, L.T. Yu and J. Gal,Proc. 8th Int. Cong. Catal., Berlin, 1984, pp. 101–112.

  29. C. Kim, K. Chen, F.V. Hanson, A.G. Oblad and Y. Tsai, Am. Chem. Soc., Div. of Petr. Chem., Prepr. 31(1) (1986) 198–207.

    Google Scholar 

  30. R.A. Fiato and L. Soled (Exxon Res. & Engr. Co.), U.S. Patent, 4,621,102, Nov. 4, 1986.

  31. R.A. Fiato, R. Bar-Gadda and S. Miseo (Exxon Res. & Eng. Co.), U.S. Patent 4,719,240, Jan. 12, 1988.

  32. S.T. Sie (Shell Canada Ltd.), Canadian Patent 1,243,047, Oct. 11, 1988.

  33. C.H. Mauldin, S.M. Davis and K.B. Arcuri (Exxon Res. & Eng. Co.), U.S. Patent 4,755,536, July 5, 1988;

  34. Ibid, U.S. Patent 4,762,959, Aug. 9, 1988;

  35. Payne and C.H. Mauldin (Exxon Res. & Eng. Co.), U.S. Patents, 4,542,122; 4,595,703; and 4,556,752.

  36. N. Takahashi, T. Mori, A. Miyamoto, T. Hattori and Y. Murakami, Appl. Catal. 38 (1988) 61–69.

    Google Scholar 

  37. E. Iglesia, S.L. Soled and R.A. Fiato (Exxon Res. and Eng. Co.), U.S. Patent 4,738,948, Apr. 19, 1988.

  38. R. Snel, App. Catal. 37 (1988) 35–44.

    Google Scholar 

  39. J. Wang and C.H. Bartholomew,Proc. 9th Int. Congr. Catal., Calgary, Vol. 2, p. 813.

  40. C.H. Bartholomew and M. Boudart, J. Catal. 25 (1972) 173.

    Google Scholar 

  41. H. Beuther, C.L. Kibby, T.P. Kobylinski and R.B. Pannell (Gulf Res. & Dev. Co.), U.S. Patent 4,399,234, Aug. 16, 1983;

  42. Ibid, U.S. Patent 4,423,064, Nov. 1, 1983.

  43. R.C. Reuel and C.H. Bartholomew, J. Catal. 85 (1984) 78–88;

    Google Scholar 

  44. C.H. Bartholomew and R.C. Reuel, Ind. & Eng. Chem. Prod. Res. & Develop. 24 (1984) 56.

    Google Scholar 

  45. V.K. Jones, L.R. Neubauer and C.H. Bartholomew, J. Phys. Chem. 90 (1986) 4832.

    Google Scholar 

  46. M. Boudart, A. Delbouville, J.A. Dumesic, S. Khammouma and H. Topsoe, J. Catal. 37 (1975) 486;

    Google Scholar 

  47. J.A. Dumesic, H. Topsoe, S. Khammouma and M. Boudart, ibid 37 (1975) 503.

    Google Scholar 

  48. H. Topsoe, J.A. Dumesic, E.G. Derouane, B.S. Clausen, S. Morup, J. Villadesen and N. Topsoe,Preparation of Catalyst, Vol. II (Elsevier, Amsterdam, 1979) p. 365.

    Google Scholar 

  49. C.H. Bartholomew, R.B. Pannell and J.L. Butler, J. Catal. 65 (1980) 335.

    Google Scholar 

  50. J.A. van Dillen, J.W. Geus, L.A.M. Hermans and J. van der Meivben,Proc. 6th Int. Congr. on Catalysis, London, 1976.

  51. J.T. Richardson and R.J. Dubus, J. Catal. 54 (1978) 207.

    Google Scholar 

  52. G.A. Hadjigeorghiou and J.T. Richardson, Appl. Catal. 21 (1986) 11, 37, 47.

    Google Scholar 

  53. W.K. Bell, W.O. Haag, G.W. Kierker and D.J. Klocke (Mobil Oil Corp.), U.S. Patent 4,686,313, Aug. 11, 1987.

  54. A. Brenner and D.A. Hucul, Inorg. Chem. 18 (1979) 2836;

    Google Scholar 

  55. A. Brenner, J. Chem. Soc. Chem. Commun. (1979) 251.

  56. D. Commereuc, Y. Chauvin, F. Hugues, J.M. Basset, J. Chem. Soc., Chem. Commun. (1980) 154;

  57. F. Hugues, B. Besson and J.M. Basset, J. Chem. Soc., Chem. Commun. (1980) 719;

  58. F. Hugues, P. Bussiere, J.M. Basset, D. Commereuc, Y. Chauvin, L. Bonneviot and D. Olivier, Stud. Surf. Sci. Catal. 7 (1981).

  59. G.B. McVicker and M.A. Vannice (Exxon Res. & Engr. Co.), U.S. Patent 4,191,777, Mar. 11, 1980.

  60. G.B. McVicker and M.A. Vannice, J. Catal. 63 (1980) 25–34.

    Google Scholar 

  61. Y.W. Chen, H.T. Wang and J.G. Goodwin, Jr., J. Catal. 83 (1983) 415.

    Google Scholar 

  62. J. Phillips and J.A. Dumesic, Appl. Catal. 9 (1984) 1.

    Google Scholar 

  63. J. Zwart and R. Snel, J. Molec. Catal. 39 (1985) 305–352.

    Google Scholar 

  64. A. Brenner, in:Metal Cluster, ed. M. Moskovits (Wiley, 1986) p. 249.

  65. Metal Clusters in Catalysis, eds. B.C. Gates, L. Guczi and H. Knoezinger (Elsevier, 1986) Ch. 9.

  66. R.P. Zerger, K.C. McMahon, M.D. Seltzer, R.G. Michel and S.L. Suib, J. Catal. 99 (1986) 498–505.

    Google Scholar 

  67. K.C. McMahon, S.L. Suib, B.G. Johnson and C.H. Bartholomew, J. Catal. 106 (1987) 47–53.

    Google Scholar 

  68. F. Rodriguez-Reinoso, I. Rodriguez-Ramos, A. Guerrero-Ruiz and J.D. Lopez-Gonzalez, Appl. Catal. 21 (1986) 251–261.

    Google Scholar 

  69. J. Zwart and J. Vink, Appl. Catal. 33 (1987) 383–393.

    Google Scholar 

  70. D.-K. Lee and S.-K. Ihm, J. Catal. 106 (1987) 386–393.

    Google Scholar 

  71. P.N. Dyer, R. Pierantozzi and H.P. Withers (Air Prod. and Chem. Inc.), U.S. Patents 4,670,472 and 4,619,910, June 2, 1987.

  72. S.T. Wong and R.F. Howe, Appl. Catal. 47 (1989) 229–242.

    Google Scholar 

  73. M. Rameswaren and C.H. Bartholomew, J. Catal. 117 (1989) 218–236.

    Google Scholar 

  74. B.G. Johnson, M. Rameswaren, M.D. Patil, G. Muralidhar and C.H. Bartholomew, Catal. Today 6 (1989) 81–88.

    Google Scholar 

  75. C.D. Chang, W.H. Lang and A.J. Silvestri, J. Catal. 56 (1979) 268;

    Google Scholar 

  76. P.D. Caesar, J.A. Brennan, W.E. Garwood and J. Ciric, J. Catal. 56 (1979) 274;

    Google Scholar 

  77. Mobil Oil Corp., U.S. Patent 4,086,262.

  78. T.J. Huang and W.O. Haag, Unpublished data;

  79. Chem. Eng. News 58(36) (1980) 44.

  80. S.A. Butter, F.V. Hanson and H.S. Sherry (Mobil Oil Corp.), U.S. Patent 4,207,248, June 10, 1980.

  81. V.U.S. Rao and R.J. Gormley, Hydrocarbon Processing 59(11) (1980) 139.

    Google Scholar 

  82. J.G. Miller, C.L. Yang and J. Rabo, Indirect Liquefaction Contractors Mtg., Pittsburgh, DOE Pittsburgh Energy Technology Center, 1986, pp. 1–15;

    Google Scholar 

  83. Ibid, 1987, pp. 1–17.

    Google Scholar 

  84. H. Tominaga and T. Tatsumi, Studies on the Utilization of Coal Through Conversion, Ministry of Education, Science and Culture, Japan, SPEY-16, 1987, pp. 163–168.

    Google Scholar 

  85. J. Brennan, P.D. Caesar, J. Ciric, W.E. Garwood and R.E. Holland (Mobil Corp.), U.S. Patent 4,269,783, May 26, 1981.

  86. P.K. Coughlin and J.A. Rabo (Union Carbide Corp.), U.S. Patents 4,556,645 and 4,617,320, Oct. 14, 1986.

  87. P.K. Coughlin and J.A. Rabo (Union Carbide Corp.), U.S. Patents 4,652,538, March 24, 1987.

  88. M.E. Dry,Applied Industrial Catalysis, ed. B.E. Leach (Academic Press, 1983) Vol. 2, pp. 167–213;

  89. M.E. Dry,Industrials Chemicals via C1 Processes, ACS Symposium Series, 328 (1987) 18–33;

    Google Scholar 

  90. B. Jager, M.E. Dry, T. Shingles and A.P. Steynberg, Paper 91d presented at the 1990 Spring National Meeting of the Am. Inst. of Chem. Engrs., March 18–22, 1990, Orlando, Fl.

  91. G.K. Whiting, Ph.D. Dissertation, Virginia Polytechnic Institute and State Univ., 1985;

  92. Y.A. Liu and A.M. Squires, Report to DOE, DOE/PC/50791-T3, April 30, 1984.

  93. C.N. Satterfield, G.A. Huff, Jr., H.G. Stenger, J.L. Carter and R.J. Madon, Ind. & Eng. Chem. Fund. 24 (1985) 450.

    Google Scholar 

  94. C.N. Satterfield and H.G. Stenger, Ind. &Eng. Chem. Proc. Des. & Develop. 23 (1983) 849.

    Google Scholar 

  95. A. Lampert, J. Erickson, B. Smiley, C. Vaughan, R. Apienza and W. Siegeir, Report to DOE, BNL 51799, 1983.

  96. H.W. Pennline, R.R. Schehl, R.E. Tischer and M.F. Zarochak, Paper 14c, AIChE Summer National Meeting, August 19–22, 1984, Philadelphia.

  97. W.E. Carroll, N. Cilen and S.A. Motika, Report to DOE, DOE/PC/30021-T17, March 1985;

  98. W.E. Carroll, N. Cilen and H.P. Withers, ACS Div. of Fuel Chem., Prepr. 31(3) (1986) 83–94.

    Google Scholar 

  99. M.A. McDonald, ACS Div. of Petr. Chem., Prepr. 31(3) (1986) 17–22.

    Google Scholar 

  100. E. Kikuchi, Studies On Utilization of Coal Through Conversion, Ministry of Education, Sciences, and Culture, Japan, SPEY-16, 1987, pp. 193–198;

    Google Scholar 

  101. H. Itoh, H. Tanabe and E. Kikuchi, Appl. Appl. Catal. 47 (1989) L1-L6.

    Google Scholar 

  102. B.W. Brian and P.N. Dyer, Paper 14e, 1984 AIChE Summer National Meeting, Aug. 19–22, Philadelphia.

  103. S. Saxena and S. Shrivastava,Proc. Indirect Liquefaction Contractors Meeting, Pittsburgh, 1986, pp. 177–187;

  104. S.C. Saxena, M. Rosen, D.N. Smith and J.A. Ruether, Chem. Eng. Comm. 40 (1986) 97–151.

    Google Scholar 

  105. D. Stern, A.T. Bell and H. Heinemann, Chem. Eng. Sci. 38 (1983) 597–605;

    Google Scholar 

  106. A.T. Bell, and H. Heinemann,Proc. Univ. Coal and ARTD Coal Liquefaction Conference, June 5–7, 1984, Pittsburgh.

  107. C.N. Satterfield,Proc. Univ. Coal and ARTD Coal Liquefaction Conference, June 5–7, 1984, Pittsburgh.

  108. C.N. Satterfield, G.A. Huff, Jr. and H.G. Stenger, Ind. & Eng. Chem. Proc. Des. & Develop. 20 (1981) 666.

    Google Scholar 

  109. K. Gupte, J.C.W. Kuo, T.M. Leib and J. Smith, 1984 AIChE Summer National Meeting, Aug. 19–22, 1984, Philadelphia;

  110. J.C. Kuo, M. Smith, K.M. Gupte and T.M. Lieb,Proc. Indirect Liquefaction Contractors Meeting, 1985, Pittsburgh, pp. 113–144.

  111. W. O'Dowd, D.N. Smith and J.A. Reuther,Proc. Indirect Liquefaction Contractors Meeting, 1985, Pittsburgh, pp. 451–478.

  112. D.B. Bukur, D. Petrov and J.G. Daly,Proc. Indirect Liquefaction Contractors Meeting, 1985, Pittsburgh, pp. 479–512.

  113. D. Stern, A.T. Bell and H. Heinemann, Chem. Eng. Sci. 40 (1985) 1665–1677;

    Google Scholar 

  114. Ibid, Ind. Eng. Chem. Process Des. Dev. 24 (1985) 1213–1219.

    Google Scholar 

  115. K. Fujimoto, Studies On Utilization of Coal Through Conversion, Ministry of Education, Sciences, and Culture, Japan, SPEY-16, 1987, pp. 199–204.

    Google Scholar 

  116. C.N. Satterfield and H.G. Stenger, Ind. & Eng. Chem. Proc. Des. & Develop. 24 (1985) 407, 411.

    Google Scholar 

  117. K.-H. Eisenlohr and H. Gaensslen, Erdoel Kohle, Erdgas, Petrochem. Brennst.-Chem. 35 (1982) 27.

    Google Scholar 

  118. J.C.W. Kuo, Final Report to DOE, DOE/PC/30022-10, June 1983.

  119. T. Maxwell, M.J. v.d. Burgt, C.J. van Leeuwen, J.J. del'Amico and S.T. Sie, Petro Pacific 1984, Melbourne, Australia, Sept. 16–19, 1984;

  120. M.J. van der Burgt, J. van Klinken and S.T. Sie, 5th Synfuels Worldwide Symposium, Washington, 1985, Nov. 11–13, 1985.

  121. S.T. Sie (Shell Oil Co.), U.S. Patent 4,579,986, April 1, 1986;

  122. J.K. Minderhoud and S.T. Sie (Shell Oil Co.), U.S. Patent 4,594,468, June 10, 1986.

  123. J. Eilers, S.A. Posthuma and S.T. Sie, Paper 91a, presented at the 1990 Spring National Meetings of the Am. Inst. of Chem. Engrs., March 18–22, 1990, Orlando, FI.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartholomew, C.H. Recent technological developments in Fischer-Tropsch catalysis. Catal Lett 7, 303–315 (1990). https://doi.org/10.1007/BF00764511

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00764511

Navigation