Advertisement

Catalysis Letters

, Volume 16, Issue 1–2, pp 1–9 | Cite as

The retention of copper ions by AlPO4-5/VAPO-5 and their effect on reactant access

  • B. I. Whittington
  • J. R. Anderson
Article

Abstract

The reaction of copper salts with AlPO4-5 or Vv-VAPO-5 under acidic (CuCl2, pH adjusted to 2) but especially basic conditions (Cu(NH3) 4 2+ , pH adjusted to 9) gives ion incorporations greater than expected by a simple ion exchange mechanism (both AlPO4-5 and Vv-VAPO-5 could be expected to have no cation exchange capacity). Ion incorporation is proposed to occur initially at defect sites, and examination of the ESR spectrum of a dehydrated, evacuated CuCl2-exchanged AlPO4-5 shows that these defect sites give rise to a number of unique environments upon CuII incorporation. The CuCl2-exchanged VAPO-5 retains a significant toluene accessibility to the Vv sites in the VAPO-5. However, the toluene accessibility in the Cu(NH3) 4 2+ -exchanged VAPO-5 is significantly reduced and we propose this is due to a combination of the presence of crystalline CuO and structural collapse from reaction with base (NH4OH). The ability of treatment with base (NH4OH, pH ≈ 13) to restrict access of toluene to the Vv sites of the original VAPO-5 was verified in a separate experiment.

Keywords

Ion exchange AlPO4-5 VAPO-5 defect sites copper ESR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.H. Meinhold and N.J. Tapp, Zeolites 11 (1991) 401.Google Scholar
  2. [2]
    R. Von Ballmoos and E.G. Derouane, Eur. Pat. Appl. 0 166 520 (1985).Google Scholar
  3. [3]
    V.R. Choudhary, D.B. Akolekar, A.P. Singh and S.D. Sansare, J. Catal. 111 (1988) 254.Google Scholar
  4. [4]
    C. Montes, M.E. Davis, B. Murray and M. Narayana, J. Phys. Chem. 94 (1990) 6431.Google Scholar
  5. [5]
    R. Szostak,Molecular Sieves: Principles of Synthesis and Identification (Van Nostrand Reinhold, New York, 1989) p. 310.Google Scholar
  6. [6]
    C. Naccache and Y. Ben Taarit, Chem. Phys. Lett. 11 (1971) 11.Google Scholar
  7. [7]
    R.G. Herman, J.H. Lunsford, H. Beyer, P.A. Jacobs and J.B. Uytterhoeven, J. Phys. Chem. 79 (1975) 2388.Google Scholar
  8. [8]
    A. Endoh, K. Mizoe, K. Tsutsumi and T. Takaishi, J. Chem. Soc. Faraday Trans. I 85 (1989) 1327.Google Scholar
  9. [9]
    1B.I. Whittington and J.R. Anderson, J. Phys. Chem. 95 (1991) 3306.Google Scholar
  10. [10]
    M.A. Kohler, H.E. Curry-Hyde, A.E. Hughes, B.A. Sexton and N.W. Cant, J. Catal. 108 (1987) 323.Google Scholar
  11. [11]
    M. Hunger, J. Karger, H. Pfeifer, J. Caro, B. Zibrowius, M. Bulow and R. Mostowicz, J. Chem. Soc. Faraday Trans. I 83 (1987) 3459.Google Scholar
  12. [12]
    A.V. Kucherov and A.A. Slinkin, Zeolites 6 (1986) 175.Google Scholar
  13. [13]
    J.R. Pilbrow,Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990).Google Scholar
  14. [14]
    T.D. Smith, J.F. Boas and J.R. Pilbrow, Austr. J. Chem. 27 (1974) 2535.Google Scholar
  15. [15]
    M.M. Iannuzzi and P.H. Rieger, Inorg. Chem. 14 (1975) 2895.Google Scholar
  16. [16]
    S.H. Jhung, Y.S. Oh and H. Chon, Appl. Catal. 62 (1990) 61.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1992

Authors and Affiliations

  • B. I. Whittington
    • 1
    • 2
  • J. R. Anderson
    • 1
    • 2
  1. 1.Chemistry DepartmentMonash UniversityClaytonAustralia
  2. 2.CSIRO Division of Materials Science and TechnologyClaytonAustralia

Personalised recommendations