Skip to main content
Log in

Redox chemistry in excessively ion-exchanged Cu/Na-ZSM-5

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

TPR/TPD and FTIR are used to characterize “excessively ion-exchanged” Cu/Na-ZSM-5. After calcination in O2 at 773 K at least two copper-oxygen species are present in addition to Cu2+ ions; these have been identified as CuO and [Cu-O-Cu]2+. Reduction in H2 transforms all these into Cu0 below 773 K. [Cu-O-Cu]2+ is autoreduced to Cu+ during outgassing. Reoxidation of Cu0 by zeolite protons to Cu+ is observed above 723 K in He or Ar; in the presence of CO this process is considerably enhanced and observed at much lower temperature, because CO is strongly adsorbed on Cu+. At 293 K CO adsorption causes reversible changes in the FTIR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Iwamoto, in:Future Opportunities in Catalytic and Separation Technology, Studies in Surface Science and Catalysis, Vol. 54, eds. M. Misono, Y. Moro-oka and S. Kimura (Elsevier, Amsterdam, 1990) ch.II.3, p. 121.

    Google Scholar 

  2. M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno and Y. Mine, J. Phys. Chem. 95 (1991) 3727.

    Google Scholar 

  3. A.V. Kucherov, A.A. Slinkin, D.A. Kondrat'ev, T.N. Bondarenko, A.M. Rubinstein and Kh.M. Minachev, Kinet. Catal. 26 (1985) 353; Zeolites 5 (1985) 320.

    Google Scholar 

  4. C.M. Naccache and Y.B. Taarit, J. Catal. 22 (1971) 171.

    Google Scholar 

  5. P.A. Jacobs, W. Wilde, R.A. Schoonheydt, J.B. Uytterhoeven and H. Beyer, J. Chem. Soc. Faraday Trans. I 72 (1976) 1221.

    Google Scholar 

  6. C.C. Chao and J.H. Lunsford, J. Chem. Phys. 57 (1972) 2890.

    Google Scholar 

  7. J.C. Conesa and J. Soria, J. Chem. Soc. Faraday Trans. I 75 (1979) 406.

    Google Scholar 

  8. M. Iwamoto, M. Nakamura, H. Nagano and S. Kagawa, J. Phys. Chem. 86 (1982) 153.

    Google Scholar 

  9. F.R. Benn, J. Dwyer, A. Esfahani, N.P. Evmerides and A.K. Szczepura, J. Catal. 48 (1977) 60.

    Google Scholar 

  10. F. Mahoney, R. Rudham and J.V. Summers, J. Chem. Soc. Faraday Trans. I 75 (1979) 314.

    Google Scholar 

  11. A.A. Davydov, N.A. Rubene and A.A. Budneva, Kinet. Catal. 19 (1978) 776.

    Google Scholar 

  12. M. Amara, M. Bettahar, L. Gengembre and D. Olivier, Appl. Catal. 35 (1987) 153.

    Google Scholar 

  13. T.T. Wong, A.Yu. Stakheev and W.M.H. Sachtler, J. Phys. Chem., to be published.

  14. S.T. Homeyer and W.M.H. Sachtler, J. Catal. 117 (1989) 91.

    Google Scholar 

  15. L.M. Kustov, D. Ostgard and W.M.H. Sachtler, Catal. Lett. 9 (1991) 121, and references therein.

    Google Scholar 

  16. R.A. Schoonheydt, L.J. Vandamme, P.A. Jacobs and J.B. Uytterhoeven, J. Catal. 43 (1976) 292.

    Google Scholar 

  17. M. Iwamoto, K. Maruyama, N. Yamazoe and T. Selyama, J. Phys. Chem. 81 (1977) 622.

    Google Scholar 

  18. P.A. Jacobs and H.K. Beyer, J. Phys. Chem. 83 (1979) 1174.

    Google Scholar 

  19. C. Li, K. Domen, K.-I. Maruya and T. Onishi, J. Am. Chem. Soc. 111 (1989) 7683.

    Google Scholar 

  20. K.-P. Wendlandt, F. Vogt, W. Mörke and I. Achkar,Zeolite Chemistry and Catalysis, eds. P.A. Jacobs, N.I. Jaeger, L. Kubelková and B. Wichterlová (Elsevier, Amsterdam, 1991) p. 223.

    Google Scholar 

  21. P.A. Jacobs and R. von Ballmoos, J. Phys. Chem. 86 (1982) 3050.

    Google Scholar 

  22. J. Datka and E. Tuznik, Zeolites 5 (1985) 230.

    Google Scholar 

  23. G.L. Woolery, L.B. Alemany, R.M. Dessau and A.W. Chester, Zeolites 6 (1986) 14.

    Google Scholar 

  24. V.L. Zholobenko, L.M. Kustov, V.Yu. Borovkov and V.B. Kazansky, Zeolites 8 (1988) 175.

    Google Scholar 

  25. T. Romotowski, J. Komorek, Ye.A. Paukshtis and E.N. Yurchenko, Zeolites 11 (1991) 497.

    Google Scholar 

  26. Y.Y. Huang, J. Catal. 30 (1973) 187; J. Am. Chem. Soc. 95 (1973) 6636.

    Google Scholar 

  27. E. Loeffer, U. Lohse, Ch. Peuker, G. Oehlmann, L.M. Kustov, V.L. Zholobenko and V.B. Kazansky, Zeolites 10 (1990) 266.

    Google Scholar 

  28. F. Vogt, I. Achkar, K.-P. Wendlandt, H. Hobert and M. Meier, Z. Chem. (Leipzig) 30 (1990) 112.

    Google Scholar 

  29. A.A. Davydov, Kinet. Catal. 26 (1985) 135.

    Google Scholar 

  30. G. Busca, J. Mol. Catal. 43 (1987) 225.

    Google Scholar 

  31. A.A. Davydov and A.A. Budneva, React. Kinet. Catal. Lett. 25 (1984) 121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from: Center for Catalysis, Surface and Material Science, Department of Organic Chemistry, József Attila University, Dóm tér 8, Szeged, H-6720 Hungary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sárkány, J., d'Itri, J.L. & Sachtler, W.M.H. Redox chemistry in excessively ion-exchanged Cu/Na-ZSM-5. Catal Lett 16, 241–249 (1992). https://doi.org/10.1007/BF00764336

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00764336

Keywords

Navigation