Advertisement

General Relativity and Gravitation

, Volume 22, Issue 7, pp 749–763 | Cite as

On the application of computer algebra to velocity dominated approximations

  • G. Holmes
  • G. C. Joly
  • J. Smallwood
Research Articles
  • 41 Downloads

Abstract

We demonstrate the implementation of a computer algebra system to perform calculations in a variable frame formalism in general relativity in SHEEP. We present the results of the application of such a program to the velocity dominated approximations to solutions near space-like singularities.

Keywords

General Relativity Differential Geometry Computer Algebra Computer Algebra System Frame Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frick, I. (1977). University of Stockholm Institute of Theoretical Physics technical report 77-15.Google Scholar
  2. 2.
    Joly, G. C. (1986). InEleventh International Conference on General Relativity and Gravitation, Abstracts Vol. 1.Google Scholar
  3. 3.
    Hohnes, G. (1986). InEleventh International Conference on General Relativity and Gravitation, Abstracts Vol. 1.Google Scholar
  4. 4.
    Hörnfeldt, L. (1988).Computer Algebra in Relativity (Methods for handling abstract tensors and noncommutative objects), University of Stockholm Ph. D thesis.Google Scholar
  5. 5.
    Hearn, A. C. (1985).REDUCE Users Manual — Version 3.2, Rand Publication CP78 (Rev. 4/85), (The Rand Corporation, Santa Monica, California).Google Scholar
  6. 6.
    Char, B. W., Geddes, K. O., Gentleman, W. M., and Gönnet, G. H. (1983). InProceedings of EUROCAL 1982, ed. J. A. Van Hulzen, (Lecture Notes in Computer Science, 162, Springer, Berlin).Google Scholar
  7. 7.
    MacCallum, M. A. H. (1986). InGravitational Collapse and Relativity (Proceedings of the XIV Yamada conference), ed. H. Sato and T. Nakamura, (World Scientific, Singapore).Google Scholar
  8. 8.
    d'Inverno, R. A. and Frick, I. (1982).Gen. Rel. Grav.,14, 735.Google Scholar
  9. 9.
    Skea, J. E. F. (1988). “Applications of SHEEP,” Internal Report, Queen Mary College, London.Google Scholar
  10. 10.
    Lifschitz, E. M. and Khalatnikov, I. M. (1963).Adv. Phys.,12, 185.Google Scholar
  11. 11.
    Eardley, D., Liang, E., and Sachs, R. (1972).J. Math. Phys.,13, 99.Google Scholar
  12. 12.
    Smallwood, J. (1983). “Velocity Dominated Singularities,” Internal Report, Queen Mary College, London.Google Scholar
  13. 13.
    Heckmann, O. and Schucking, E. (1962). InGravitation: An Introduction to Current Research, ed. L. Witten, (Wiley).Google Scholar
  14. 14.
    Kasner, E. (1921).Amer. J. Math.,43, 217.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • G. Holmes
    • 1
  • G. C. Joly
    • 2
  • J. Smallwood
    • 2
  1. 1.Faculty of Mathematical StudiesUniversity of SouthamptonSouthamptonUK
  2. 2.School of Mathematical SciencesQueen Mary and Westfield CollegeLondonUK

Personalised recommendations