Advertisement

Catalysis Letters

, Volume 8, Issue 2–4, pp 185–192 | Cite as

A comparison of the thermal stabilities Ga13, GaAl12 and Al13-pillared clay minerals

  • Susan M. Bradley
  • Ronald A. Kydd
Article

Abstract

A comparison has been made of the thermal stabilities of pillared clays prepared through the intercalation of Ga13, Al13 and GaAl12 polyoxocations by STx-1 montmorillonite. The stabilities, as revealed through differential thermal analyses, powder X-ray diffraction and surface area studies, were found to increase in the order Ga13-PILC < Al13-PILC < GaAl12-PILC. This is in agreement with the order of the stabilities of these polyoxocations in solution, which also correlates with their relative degrees of symmetry, as previously revealed by NMR studies.

Keywords

Pillared clays PILC polyoxocations tridecamers catalysis Al13 GaAl12 Ga13 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Figueras, Catal. Rev. Sci. Eng., 30 (1988) 457.Google Scholar
  2. [2]
    T.J. Pinnavaia, in:Chemical Reactions in Organic and Inorganic Constrained Systems, ed. R. Sutton, NATO ASI Series, Series C, Vol. 165 (D. Reidel Publishing Company, Dordrecht, Holland, 1986) 151; see also: J.M. Thomas, in:Intercalation Chemistry eds. M.S. Whittingham and A.J. Jacobson (Academic Press, 1982) p. 55.Google Scholar
  3. [3]
    D.E.W. Vaughan, in:Perspectives in Molecular Sieve Science, eds. W.H. Flank and T.E. Whyte, ACS Symposium Series, Vol. 368 (American Chemical Society, Washington, DC, 1988) 308.Google Scholar
  4. [4]
    M.L. Occelli and R.M. Tindwa, Clays and Clay Minerals 31 (1983) 22.Google Scholar
  5. [5]
    K. Suzuki, M. Horio and T. Mori, Mat. Res. Bull. 23 (1988) 1711.Google Scholar
  6. [6]
    D. Plee, A. Schutz, B. Poncelet and J.J. Fripiat, in:Catalysis by Acids and Bases, eds. B. Imelik, C. Naccache, G. Coudrier, Y.B. Taorit and J.C. Vedrine, Studies in Surface Science and Catalysis, Vol. 20 (Elsevier, New York, 1985), 343.Google Scholar
  7. [7]
    T.J. Pinnavaia, M.-S. Tzou, S.D. Landau and R.H. Raythatha, J. Molec. Catalysis 27 (1984) 195.Google Scholar
  8. [8]
    D. Plee, F. Borg, L. Gatineau and J.J. Fripiat, J. Am. Chem. Soc. 107 (1985) 2362.Google Scholar
  9. [9]
    M.L. Occelli, J. Molec. Catalysis 35 (1986) 377.Google Scholar
  10. [10]
    D.E.W. Vaughan and R.J. Lussier,Proc. 5th Int. Conf. on Zeolites, Naples (1980) 94.Google Scholar
  11. [11]
    S.M. Bradley, R.A. Kydd and R. Yamdagni, J.C.S. Dalton Trans. (1990) 413.Google Scholar
  12. [12]
    S.M. Bradley, R.A. Kydd and R. Yamdagni, J.C.S. Dalton Trans. (1990) 2653.Google Scholar
  13. [13]
    S.M. Bradley, R.A. Kydd and R. Yamdagni, Magn. Reson. Chem. 28(1990) 746.Google Scholar
  14. [14]
    S.M. Bradley, R.A. Kydd and C.A. Fyfe, Results to be published.Google Scholar
  15. [15]
    H. Van Olphen and J.J. Fripiat (eds),Data Handbook for Clay Materials and other Non-Metallic Minerals (Pergamon Press, New York, 1979) 22.Google Scholar
  16. [16]
    A. Bellaloui, D. Plee and P. Meriaudeau, Appl. Catal. 63 (1990) L7.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1991

Authors and Affiliations

  • Susan M. Bradley
    • 1
  • Ronald A. Kydd
    • 1
  1. 1.Department of ChemistryUniversity of CalgaryCalgaryCanada

Personalised recommendations