Reactivity of tungsten carbides I. Catalytic and temperature-programmed reactions of methanol
Article
- 149 Downloads
- 11 Citations
Abstract
When methanol reacts over tungsten carbide in a steady-state catalytic mode, methyl formate is formed with a selectivity higher than 90%. On the other hand, temperature-programmed decomposition of methanol preadsorbed on the same surface produces mostly carbon monoxide. The difference in selectivity in both modes of reaction is discussed. By contrast, platinum catalyzes the transformation of methanol to dimethyl ether with high selectivity.
Keywords
Tungsten carbide methanol reactionsPreview
Unable to display preview. Download preview PDF.
References
- [1]W. Keim, in:Catalysis in C 1 Chemistry, ed. W. Keim (D. Reidel, Dordrecht, 1983) p. 89.Google Scholar
- [2]F. Nozaki, Hyomen (Surface) 21 (1983) 194.Google Scholar
- [3]E. Miyazaki and I. Yasumori, Bull. Chem. Soc. Jpn. 40 (1967) 2012.Google Scholar
- [4]Y. Morikawa, T. Goto, Y. Moro-oka and T. Ikawa, Chem. Lett. (1982) 1805.Google Scholar
- [5]B. Denise and R.P.A. Sneeden, C1 Mol. Chem. 1 (1985) 307.Google Scholar
- [6]T. Sodesawa, M. Nagacho, A. Onodera and F. Nozaki, J. Catal. 102 (1986) 460.Google Scholar
- [7]I. Yasumori, T. Nakamura and E. Miyazaki, Bull. Chem. Soc. Jpn. 40 (1967) 1372.Google Scholar
- [8]R.P.H. Gasser, G.V. Jackson and F.E. Rolling, Surf. Sci. 61 (1976) 443.Google Scholar
- [9]E. Miyazaki, I. Kojima and M. Orita, J.C.S., Chem. Commun. (1985) 108.Google Scholar
- [10]E.I. Ko, J.B. Benziger and R.J. Madix, J. Catal. 62 (1980) 264.Google Scholar
- [11]L. Volpe and M. Boudart, J. Solid State Chem. 59 (1985) 348.Google Scholar
- [12]R.B. Levy and M. Boudart, Science 181 (1973) 547.Google Scholar
- [13]M. Boudart, J.S. Lee, K. Imura and S. Yoshida, J. Catal. 103 (1987) 30.Google Scholar
- [14]A.J. Robell, E.V. Ballou and M. Boudart, J. Phys. Chem. 68 (1964) 2748.Google Scholar
- [15]J.E. Benson and M. Boudart, J. Catal. 4 (1965) 704.Google Scholar
- [16]C. McConica and M. Boudart, J. Catal. 117 (1989) 33.Google Scholar
- [17]L.E. Toth,Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
- [18]R.V. Sara, J. Amer. Ceram. Soc. 48 (1965) 251.Google Scholar
- [19]D.R. Stull, E.F. Westrum, Jr. and G.C. Sinke,The Chemical Thermodynamics of Organic Compounds (John Wiley and Sons, New York, 1969).Google Scholar
- [20]Y. Matsumura, K. Hashimoto and S. Yoshida, J. Catal. 100 (1986) 392.Google Scholar
- [21]I. Kojima, E. Miyazaki, Y. Inoue and I. Yasumori, J. Catal. 59 (1979) 472.Google Scholar
- [22]O.M. Poltorak and V.S. Boronin, Russ. J. Phys. Chem. 40 (1966) 1436.Google Scholar
- [23]R. Van Hardeveld and F. Hartog, Surf. Sci. 15 (1969) 189.Google Scholar
- [24]M. Boudart, in:Proc. VIth Int. Congress on Catalysis, Vol. 1, eds. G.C. Bond, P.B. Wells and F.C. Tompkins (Chemical Society, London, 1977) p.1.Google Scholar
- [25]J.S. Rieck and A.T. Bell, J. Catal. 85 (1984) 143.Google Scholar
- [26]E. Iglesia and M. Boudart, J. Catal. 81 (1983) 204, 214, 224; J. Catal 88 (1984) 325; J. Phys. Chem. 90 (1986) 5272.Google Scholar
Copyright information
© J.C. Baltzer A.G. Scientific Publishing Company 1991