Catalysis Letters

, Volume 11, Issue 2, pp 209–217 | Cite as

The effects of local structural relaxation on aluminum siting within H-ZSM-5

  • Stephen R. Lonsinger
  • Arup K. Chakraborty
  • Doros N. Theodorou
  • Alexis T. Bell


Semiempirical molecular orbital calculations have been performed to study aluminum siting in H-ZSM-5 zeolites. Local structural rearrangements upon substituting aluminum (with a charge compensating proton) for silicon are found to be important. The T12 site is found to be the most preferred site for aluminum substitution. However, the calculated energetics for substitution show that several tetrahedral sites are energetically comparable with regard to aluminum siting. Results pertaining to the electronic properties of the acidic site upon aluminum substitution at each of the twelve distinct tetrahedral sites are presented. The acidic center is found to be a rather soft species, with the HOMO-LUMO energy gap being roughly 8 eV.


ZSM-5 molecular orbital theory aluminum siting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.W. Breck,Zeolite Molecular Sieves: Structure, Chemistry and Use (Wiley, New York, 1974).Google Scholar
  2. [2]
    J. Sauer, Chem. Rev. 89 (1989) 199.Google Scholar
  3. [3]
    J.G. Fripiat, G.G. Berger-Andre, J.M. Andre and E.G. Derouane, Zeolites 3 (1983) 306.Google Scholar
  4. [4]
    E.G. Derouane and J.G. Fripiat, Zeolites 5 (1985) 165.Google Scholar
  5. [5]
    E.G. Derouane and J.G. Fripiat, J. Phys. Chem. 91 (1987) 145.Google Scholar
  6. [6]
    P. Hohenberg, W. Kohn, Phys. Rev. 136B (1964) 864;Google Scholar
  7. [6] a)
    W. Kohn and L.J. Sham, Phys. Rev. 140A (1965) 1133.Google Scholar
  8. [7]
    M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc. 99 (1977) 4899.Google Scholar
  9. [8]
    D.H. Olson, G.T. Kokotailo and S.W. Lawton, J. Phys. Chem. 85 (1981) 2238.Google Scholar
  10. [9]
    J.E. Huheey,Inorganic Chemistry, Principles of Structure and Reactivity (Harper, New York, 1978);Google Scholar
  11. [9] a)
    J.J. Pluth and J.V. Smith, J. Am. Chem. Soc. 102 (1980) 4704.Google Scholar
  12. [10]
    D.J. Freude, J. Klinowski and H. Hamdan, Chem. Phys. Lett. 149 (1988) 355.Google Scholar
  13. [11]
    R.S. Mulliken, J. Chem. Phys. 23 (1955) 1833.Google Scholar
  14. [12]
    R.G. Pearson,Hard and Soft Acids and Bases (Dowden, Hutchinson and Ross, Stroudsburg, PA, 1973).Google Scholar
  15. [13]
    G. Klopman, J. Am. Chem. Soc. 90 (1968) 223.Google Scholar
  16. [14]
    G. Klopman and R.F. Hudson, Tetrahedron Lett. 12 (1967) 1103.Google Scholar
  17. [15]
    R.G. Parr and R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512.Google Scholar
  18. [16]
    R.G. Parr and W. Yang, J. Am. Chem. Soc. 106 (1984) 4049.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1991

Authors and Affiliations

  • Stephen R. Lonsinger
    • 1
  • Arup K. Chakraborty
    • 1
  • Doros N. Theodorou
    • 1
  • Alexis T. Bell
    • 1
  1. 1.Department of Chemical Engineering and Center for Advanced Materials, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations