Catalysis Letters

, Volume 17, Issue 1–2, pp 105–116 | Cite as

Comparison of (non)-sulfided NiNaY zeolite catalysts prepared by ion-exchange and impregnation by xenon adsorption and129Xe NMR

  • T. I. Korányi
  • L. J. M. van de Ven
  • W. J. J. Welters
  • J. W. de Haan
  • V. H. J. de Beer
  • R. A. van Santen
Article

Abstract

Ni2+ exchanged and NiCl2 impregnated non-sulfided and sulfided NaY zeolites were characterized by xenon adsorption isotherms,129 Xe NMR and thiophene hydrodesulfurization. The nickel species are located mainly inside the micropores of the zeolites in all samples. Ion-exchange results in a more homogeneous distribution of these species than impregnation. This explains their lower hydrodesulfurization activity compared to the ion-exchanged samples.

Keywords

Xenon adsorption 129Xe NMR zeolites NiNaY sulfidation of hydrodesulfurization (HDS) thiophene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Fraissard and T. Ito, Zeolites 8 (1988) 350.Google Scholar
  2. [2]
    A. Gedeon, J.L. Bonardet, T. Ito and J. Fraissard, J. Phys. Chem. 93 (1989) 2563.Google Scholar
  3. [3]
    N. Bansal and C. Dybowski, J. Phys. Chem. 92 (1988) 2333.Google Scholar
  4. [4]
    E.W. Scharpf, R.W. Crecely, B.C. Gates and C. Dybowksi, J. Phys. Chem. 90 (1986) 9.Google Scholar
  5. [5]
    W.J.J. Welters, T.I. Korányi, V.H.J. de Beer and R.A. van Santen, in:Proc. 10th Int. Congress on Catalysis, Budapest 1992, in press.Google Scholar
  6. [6]
    T.I. Korányi, L.J.M. van de Ven, W.J.J. Welters, J.W. de Haan, V.H.J. de Beer and R.A. van Santen, submitted.Google Scholar
  7. [7]
    J. Demarquay and J. Fraissard, Chem. Phys. Lett. 136 (1987) 314.Google Scholar
  8. [8]
    M. Springuel-Huet, J. Demarquay, T. Ito and J. Fraissard, Stud. Surf. Sci. Catal. 37 (1988) 183.Google Scholar
  9. [9]
    E.G. Derouane, J.M. Andre and A.A. Lucas, Chem. Phys. Lett. 137 (1987) 336.Google Scholar
  10. [10]
    E.G. Derouane and J.B. Nagy, Chem. Phys. Lett. 137 (1987) 341.Google Scholar
  11. [11]
    E.G. Derouane, Chem. Phys. Lett. 142 (1987) 200.Google Scholar
  12. [12]
    E.G. Derouane, J.M. Andre and A.A. Lucas, J. Catal. 110 (1988) 58.Google Scholar
  13. [13]
    E.G. Derouane and M.E. Davis, J. Mol. Catal. 48 (1988) 37.Google Scholar
  14. [14]
    A. Clark,The Theory of Adsorption and Catalysis (Academic Press, New York, 1970) p. 9.Google Scholar
  15. [15]
    T. Ito and J. Fraissard, J. Chem. Soc. Faraday Trans. I 83 (1987) 451.Google Scholar
  16. [16]
    Q.J. Chen and J. Fraissard, J. Phys. Chem. 96 (1992) 1809, 1814.Google Scholar
  17. [17]
    T. Ito and J. Fraissard, J. Chem. Phys. 76 (1982) 5225.Google Scholar
  18. [18]
    D.W. Johnson and L. Griffiths, Zeolites 7 (1987) 484.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • T. I. Korányi
    • 1
  • L. J. M. van de Ven
    • 1
  • W. J. J. Welters
    • 1
  • J. W. de Haan
    • 1
  • V. H. J. de Beer
    • 1
  • R. A. van Santen
    • 1
  1. 1.Schuit Institute of CatalysisEindhoven University of TechnologyMB EindhovenThe Netherlands

Personalised recommendations