Catalysis Letters

, Volume 17, Issue 1–2, pp 29–37 | Cite as

Strong metal-support interaction in Ni/TiO2 catalysts: in situ EXAFS and related studies

  • T. Arunarkavalli
  • G. U. Kulkarni
  • G. Sankar
  • C. N. R. Rao


In situ EXAFS and X-ray diffraction investigations of Ni/TiO2 catalysts show that NiTiO3 is formed as an intermediate during calcination of catalyst precursors prepared by the wet-impregnation method; the intermediate is not formed when ion-exchange method is used for the preparation. On hydrogen reduction, NiTiO3 gives rise to Ni particles dispersed in the TiO2(rutile) matrix. The occurrence of the anatase-rutile transformation of the TiO2 support, the formation and subsequent decomposition/reduction of NiTiO3 as well as the unique interface properties of the Ni particles are all factors of importance in giving rise to metal-support interaction. Active TiO2(anatase) prepared from gel route gives an additional species involving Ni3+.


SMSI strong metal-support interaction Ni/TiO2 catalyst EXAFS of catalysts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.J. Tauster, S.C. Fung, R.T.K. Baker and J.A. Horsley, Science 211 (1981) 1121.Google Scholar
  2. [2]
    G.L. Haller and D.E. Resasco, Adv. Catal. 36 (1989) 173.Google Scholar
  3. [3]
    H. Yoshitake and Y. Iwasawa, J. Phys. Chem. 96 (1992) 1329.Google Scholar
  4. [4]
    S.J. Tauster, S.C. Fung and R.L. Garten, J. Am. Chem. Soc. 100 (1978) 170.Google Scholar
  5. [5]
    J. Santos, J. Phillips and J.A. Dumesic, J. Catal. 81 (1983) 147.Google Scholar
  6. [6]
    M.G. Sanchez and J.L. Gazquez, J. Catal. 104 (1987) 120.Google Scholar
  7. [7]
    L. Wang, G.W. Qiao, H.G. Ye, K.H. Kuo and Y.X. Chen, in:Proc. 9th Int. Congress on Catalysis, Vol. 3, Calgary 1988, eds. M.J. Phillips and M. Ternan (Chem. Inst. Canada, Ottawa, 1988) p. 1253.Google Scholar
  8. [8]
    A.R. Gonzalez-Elipe, A. Fernandez, J.P. Espinos and G. Munuera, J. Catal. 131 (1991) 51.Google Scholar
  9. [9]
    D.E. Resasco, PhD Thesis, Yale University, New Haven, CT, USA (1983).Google Scholar
  10. [10]
    G. Sankar, C.N.R. Rao and T. Rayment, J. Mater. Chem. 1 (1991) 299.Google Scholar
  11. [11]
    G. Sankar, K.R. Kannan and C.N.R. Rao, Catal. Lett. 8 (1991) 27.Google Scholar
  12. [12]
    H.C. Zurloye, J.A. Fallens and A.M. Stacy, J. Am. Chem. Soc. 108 (1986) 8104.Google Scholar
  13. [13]
    G.U. Kulkarni, G. Sankar and C.N.R. Rao, Z. Phys. B73 (1989) 529.Google Scholar
  14. [14]
    H. Kuroda, T. Yokoyama, K. Asakura and Y. Iwasawa, Faraday Discussions Chem. Soc. 92 (1991).Google Scholar
  15. [15]
    A.R. Gonzalez-Elipe, J.P. Holgado, R. Alvarez and G. Munuera, J. Phys. Chem. 96 (1992) 3080.Google Scholar
  16. [16]
    X.Z. Jiang, B.H. Song, Y. Chen and Y.W. Wang, J. Catal. 102 (1986) 257.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • T. Arunarkavalli
    • 1
  • G. U. Kulkarni
    • 1
  • G. Sankar
    • 1
  • C. N. R. Rao
    • 1
  1. 1.Solid State and Structural Chemistry Unit and CSIR Centre of Excellence in ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations